| 1 | Kurganov A , Petrova G . A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Communications in Mathematical Sciences, 2007, 5 (1): 133- 160 | | 2 | Bollermann A , Chen G , Kurganov A , Noelle S . A well-balanced reconstruction of wet/dry fronts for the shallow water equations. Journal of Scientific Computing, 2013, 56 (2): 267- 290 | | 3 | Touma R . Well-balanced central schemes for systems of shallow water equations with wet and dry states. Applied Mathematical Modelling, 2016, 40 (4): 2929- 2945 | | 4 | Saint-Venant De . Théorie du mouvement non permanent des eaux, avec application auxcrues des riviéres et à l'introduction des marées dans leur lit. Comptes Rendus Hebdomadaires Des Séances De Lacadémie Des Sciences, 1871, 73 (99): 148- 154 | | 5 | Gallardo J M , Castro M , Parés C , González-Vida J M . On a well-balanced high-order finite volume scheme for the shallow water equations with bottom topography and dry areas. Journal of Computational Physics, 2007, 227 (1): 574- 601 | | 6 | Shi J . A Steady-State Capturing Method for Hyperbolic Systems with Geometrical Source Terms. New York: Springer, 2004 | | 7 | Bollermann A , Noelle S . Finite volume evolution galerkin methods for the shallow water equations with dry beds. Communications in Computational Physics, 2011, 10 (2): 371- 404 | | 8 | Kurganov A , Levy D . Central-upwind schemes for the saint-venant system. Esaim Mathematical Modelling Numerical Analysis, 2010, 36 (3): 397- 425 | | 9 | Perthame B , Simeoni C . A kinetic scheme for the saint-venant system with a source term. Calcolo, 2001, 38 (4): 201- 231 | | 10 | Mario Ricchiuto , Bollermann A . Stabilized residual distribution for shallow water simulations. Journal of Computational Physics, 2009, 228 (4): 1071- 1115 | | 11 | Noelle S , Pankratz N , Puppo G , Natvig J R . Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of Computational Physics, 2006, 213 (2): 474- 499 | | 12 | Xing Y , Shu C W . High order finite difference weno schemes with the exact conservation property for the shallow water equations. Journal of Computational Physics, 2005, 208 (1): 206- 227 |
|