| 1 | Fetecau C . The Rayleigh-Stokes problem for heated second grade fluids. Int J Nonlin Mech, 2002, 37, 1011- 1015 | | 2 | Shen F , Tan W , Zhao Y , et al. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal Real World Appl, 2006, 7, 1072- 1080 | | 3 | Khan M , Anjum A , Qi H , et al. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. Z Angew Math Phys, 2010, 61, 133- 145 | | 4 | Khan M . The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model. Nonlinear Anal Real Word Appl, 2009, 10, 3190- 3195 | | 5 | Chen C M , Liu F , Burrage K , et al. Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative. J Appl Math, 2013, 204, 340- 351 | | 6 | Yu B , Jiang X Y , Qi H T . An inverse problem to estimate an unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid. Acta Mechanica Sinica, 2015, 31, 153- 161 | | 7 | Zhuang P H , Liu Q X . Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative. Appl Math Model, 2009, 30, 1533- 1546 | | 8 | Chen C M , Liu F , Burrage K , et al. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid. Comput Math Appl, 2011, 62, 971- 986 | | 9 | Wu C . Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative. Appl Numer Math, 2009, 59, 2571- 2583 | | 10 | Mohebbi A , Abbaszadeh M , Dehghan M . Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng, 2013, 264, 163- 177 | | 11 | Dehghan M , Safarpoor M , Abbaszadeh M . Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math, 2015, 290, 174- 195 | | 12 | Dehghan M , Abbaszadeh M , Deng W . Fourth-order numerical method for the space time tempered fractional diffusion-wave equation. Appl Math Lett, 2017, 73, 120- 127 | | 13 | Mirzaei D , Dehghan M . New implementation of MLBIE method for heat conduction analysis in functionally graded materials. Eng Anal Bound Elem, 2012, 36, 511- 519 | | 14 | Mohebbi A , Abbaszadeh M , Dehghan M . Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methcd Appl M, 2013, 264, 163- 177 | | 15 | Nguyen H L , Nguyen H T , Mokhtar K . Identifying initial condition of the Rayleigh-Stokes problem with random noise. Math Method Appl Sci, 2019, | | 16 | Nguyen A L , Hoan Luu V C , Nguyen H L . Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise. Math Method Appl Sci, 2018, | | 17 | Dehghan M . An inverse problem of finding a source parameter in a semilinear parabolic equation. Appl Math Model, 2001, 25, 743- 754 | | 18 | Wang J , Wei T , Zhou Y . Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. J Comput Appl Math, 2015, 279, 277- 292 | | 19 | Yang F , Li X X , Li D G , et al. The simplified Tikhonov regularization method for solving a Riesz-Feller Space-Fractional backward diffusion problem. Math Comput Sci, 2017, 11, 91- 110 | | 20 | Wang J G , Wei T , Zhou Y B . Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl Math Model, 2013, 37, 8518- 8532 | | 21 | Yang F , Zhang P , Li X X , et al. Tikhonov regularization method for identifying the space-dependent source for time-fractional diffusion equation on a columnar symmetric domain. Adv Differ Equ, 2020, | | 22 | Feng L X , Eldén L . Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method. Inverse Probl, 2014, 30, 015005 | | 23 | Wei T , Wang J . A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl Numer Math, 2014, 78, 95- 111 | | 24 | Yang F , Sun Y R , Li X X , et al. , The quasi-boundary regularization value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer Algor, 2019, 82, 623- 639 | | 25 | Yang F , Zhang Y , Liu X , Li X X . The quasi-boundary value method for identifying the initial value of the space-time an fractional diffusion equation. Acta Math Sci, 2020, 40, 641- 658 | | 26 | Qian A , Xiong X T , Wu Y . On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation. J Comput Appl Math, 2010, 233, 1969- 1979 | | 27 | Yang F , Fu C L . The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation. Appl Math Model, 2015, 39, 1500- 1512 | | 28 | Yang F , Fu J L , Li X X . A potential-free field inverse schr?dinger problem: optimal error bound analysis and regularization method. Inverse Probl Sci Engin, 2020, 28, 1209- 1252 | | 29 | Yang F , Fu J L , Li X X . A potential-free field inverse time-fractional Schr?dinger problem: Optimal error bound analysis and regularization method. Math Meth Appl Sci, 2020, | | 30 | Yang F , Fu C L , Li X X . A mollification regularization method for unknown source in time-fractional diffusion equation. Int J Comput Math, 2006, 91, 1516- 1534 | | 31 | Xiong X T , Fu C L , Li H F . Fourier regularization method of a sideways heat equation for determining surface heat flux. Math Anal Appl, 2006, 317, 331- 348 | | 32 | Li X X , Lei J L , Yang F . An a posteriori Fourier regularization method for identifying the unknown source of the space-fractional diffusion equation. Inequal Appl, 2004, 2014, 1- 13 | | 33 | Yang F , Fu C L , Li X X , et al. The Fourier regularization method for identifying the unknown source for the modified Helmholtz equation. Acta Math Sci, 2014, 34, 1040- 1047 | | 34 | Yang F , Ren Y P , Li X X . Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse Probl Sci Eng, 2018, 26, 1109- 1129 | | 35 | Yang F , Liu X , Li X X . Landweber iteration regularization method for identifying unknown source of the modified Helmholtz equation. Bound Value Probl, 2017, 2017, 1- 16 | | 36 | Yang F , Zhang Y , Li X X . Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer Algor, 2020, 83, 1509- 1530 | | 37 | Yang F , Wang N , Li X X . Landweber iterative method for an inverse source problem of time-fractional diffusion-wave equation onspherically symmetric domain. J Appl Ana Comput, 2020, 10, 514- 529 | | 38 | Yang F , Zhang Y , Li X X , Ma C Y . Landweber iteration regularization method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Advances in Difference Equations, 2017, | | 39 | Yang F , Pu Q , Li X X . The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation. Numer Algor, 2020, | | 40 | Klann E , Maass P , Ramlau R . Two-step regularization methods for linear inverse problems. Inverse Ill-posed Probl, 2006, 14, 583- 607 | | 41 | Klann E , Ramlau R . Regularization by fractional filter methods and data smoothing. Inverse Probl, 2008, 24, 025018 | | 42 | Bazhlekova E , Jin B , Lazarov R , et al. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Number Math, 2015, 131, 1- 31 | | 43 | Engl H W , Hanke M , Neubauer A . Regularization of Inverse Problem. Boston: MA, Kluwer Academic, 1996 | | 44 | Dehghan M , Abbaszadeh M . A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput-Germany, 2017, 33, 587- 605 | | 45 | Yuste S B . Weighted average finite difference methods for fractional diffusion equations. J Comput Phys, 2006, 216, 264- 274 | | 46 | Irene K . A posteriori error analysis for the Crank-Nicolson method for linear Schr?dinger equations. Esaim-Math Model Num, 2011, 45, 761- 778 |
|