| 1 | Akbas M , Linke A , Rebholz L G , Schroeder P W . The analogue of grad-div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes. Comput Methods Appl Mech Engrg, 2018, 341, 917- 938 | | 2 | Akbas M, Rebholz L G. Modular grad-div stabilization for multiphysics flow problems. 2020, arXiv: 2001. 10100 | | 3 | An R , Su J . Optimal error estimates of semi-implicit Galerkin method for time dependent nematic liquid crystal flows. J Sci Comput, 2018, 74, 979- 1008 | | 4 | Badia S , Guillén-Gónzalez F , Gutiérrez-Santacreu J V . An overview on numerical analyses of nematic liquid crystal flows. Arch Comput Methods Eng, 2011, 18, 285- 313 | | 5 | Becker R , Feng X B , Prohl A . Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J Numer Anal, 2008, 46, 1704- 1731 | | 6 | Bochev P , Dohrmann C , Gunzburger M . Stabilization of low-order mixed finite element for the Stokes equations. SIAM J Numer Anal, 2006, 44, 82- 101 | | 7 | Brenner S , Scott L . The Mathematical Theory of Finite Element Methods. Berlin: Springer, 1994 | | 8 | Cabrales R C , Guillén-González F , Gutiérrez-Santacreu J V . A time-splitting finite element stable approximation for the Ericksen-Leslie equations. SIAM J Sci Comput, 2015, 37, B261- B282 | | 9 | Cabrales R C , Guillén-González F , Gutiérrez-Santacreu J V . A projection-based time-splitting algorithm for approximating nematic liquid crystal flows with stretching. Z Angew Math Mech, 2017, 97, 1204- 1219 | | 10 | Du Q , Guo B , Shen J . Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J Numer Anal, 2001, 39, 735- 762 | | 11 | Ericksen J . Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5, 22- 34 | | 12 | Ericksen J . Continuum theory of nematic liquid crystals. Res Mech, 1987, 21, 381- 392 | | 13 | Fiordilino J A , Layton W , Rong Y . An efficient and modular grad-div stabilization. Comput Methods Appl Mech Engrg, 2018, 335, 917- 938 | | 14 | Franca L P , Hughes T J . Two classes of mixed finite element methods. Comput Methods Appl Mech Engrg, 1988, 69, 89- 129 | | 15 | Girault V , Guillén-González F . Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Math Comp, 2011, 80, 781- 819 | | 16 | Guillén-González F , Gutiérrez-Santacreu J V . A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. ESAIM: Math Model Numer Anal, 2013, 47, 1433- 1464 | | 17 | Guillén-González F , Koko J . A splitting in time scheme and augmented lagrangian method for a nematic liquid crystal problem. J Sci Comput, 2015, 65, 1129- 1144 | | 18 | He Y N , Wang A W , Mei L Q . Stabilized finite-element method for the stationary Navier-Stokes equations. J Engrg Math, 2005, 51, 367- 380 | | 19 | Jenkins E W , John V , Linke A , Rebholz L G . On the parameter choice in grad-div stabilization for stokes equations. Adv Comput Math, 2014, 40, 491- 516 | | 20 | Leslie F . Some constitutive equations for liquid crystals. Arch Ration Mech, 1987, 21, 381- 392 | | 21 | Lin F H . Nonlinear theory of defects in nematics liquid crystals: Phase transitation and flow phenomena. Commun Pure Appl Math, 1989, 42, 789- 814 | | 22 | Lin F H , Liu C . Existence of solutions for the Ericksen-Leslie system. Arch Ration Mech Anal, 2000, 154, 135- 156 | | 23 | Lin F H , Lin J , Wang C . Liquid crystal flows in two dimensions. Arch Ration Mech Anal, 2010, 197, 297- 336 | | 24 | Lin F H , Wang C . On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin Ann Math Ser B, 2010, 31, 921- 938 | | 25 | Linke A , Rebholz L G . On a reduced sparsity stabilization of grad-div type for incompressible flow problems. Comput Methods Appl Mech Engrg, 2013, 261/262, 142- 153 | | 26 | Lu X , Huang P . A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations. J Sci Comput, 2020, 82, 3 | | 27 | Minev P , Vabishchevich P N . Spliting schemes for unsteady problems involving the grad-div operator. Appl Numer Math, 2018, 124, 130- 139 | | 28 | Nochetto R , Pyo J H . A finite element gauge-Uzawa method. Part I: The Navier-Stokes equations. SIAM J Numer Anal, 2005, 43, 1043- 1068 | | 29 | Olshanskii M , Reusken A . Grad-div stabilization for Stokes equations. Math Comp, 2004, 73, 1699- 1718 | | 30 | Qin Y , Hou Y , Huang P , Wang Y . Numerical analysis of two grad-div stabilization methods for the time-dependent Stokes/Darcy model. Comput Math Appl, 2020, 79, 817- 832 | | 31 | Rong Y, Fiordilino J A. Numerical analysis of a BDF2 modular grad-div Stabilization method for the Navier-Stokes equations. 2018, arXiv: 1806.10750 | | 32 | Song L , Hou Y , Cai Z . Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Comput Meth Appl Mech Engrg, 2014, 272, 1- 16 | | 33 | Song L , Su H , Feng X . Recovery-based error estimator for stabilized finite element method for the stationary Navier-Stokes problem. SIAM J Sci Comput, 2016, 38, A3758- A3772 | | 34 | Zhang S , Liu C , Zhang H . Numerical simulations of hydrodynamics of nematic liquid crystals: Effects of kinematic transports. Commun Comput Phys, 2011, 9, 974- 993 | | 35 | Zheng H , Hou Y , Shi F . A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM J Sci Comput, 2010, 32, 1346- 1360 |
|