| 1 | Lax P D . Weak solutions of nonlinear hyperbolic equation and their numerical computation. Commun Pur Appl Math, 1954, 7 (1): 159- 193 | | 2 | Lax P D . Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Reg Conf Ser Appl Math, 1973, 11, 1- 48 | | 3 | Tadmor E . The numerical viscosity of entropy stable schemes for systems of conservation laws. I Math Comp, 1987, 49 (179): 91- 103 | | 4 | Lefloch P G , Mercier J M , Rohde C . Fully discrete, entropy conservative schemes of arbitrary order. SIAM J Numer Anal, 2002, 40 (5): 1968- 1992 | | 5 | Cheng X , Nie Y . A third-order entropy stable scheme for hyperbolic conservation laws. J Hyperbol Differ Eq, 2016, 13 (1): 129- 145 | | 6 | Fjordholm U S , Mishra S , Tadmor E . Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J Numer Anal, 2012, 50 (2): 544- 573 | | 7 | Fjordholm U S , Ray D . A sign preserving WENO reconstruction method. SIAM J Sci Comput, 2015, 68 (1): 42- 63 | | 8 | Biswas B , Dubey R K . Low dissipative entropy stable schemes using third order WENO and TVD reconstructions. Adv Comput Math, 2018, 44 (4): 1153- 1181 | | 9 | Ismail F , Roe P L . Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J Comput Phys, 2009, 228 (15): 5410- 5436 | | 10 | Levy D , Puppo G , Russo G . Compact central WENO schemes for multidimensional conservation laws. SIAM J Sci Comput, 2000, 22 (2): 656- 672 | | 11 | Jameson A . Analysis and design of numerical schemes for gas dynamics, 1:Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Comput Fluids, 1995, 4 (3/4): 171- 218 | | 12 | Gottlieb S , Shu C W . Total variation diminishing Runge-Kutta schemes. Math Comput, 1998, 67 (221): 73- 85 | | 13 | Zakerzadeh H , Fjordholm U S . High-order accurate, fully discrete entropy stable schemes for scalar conservation laws. IMA J Numer Anal, 2016, 36 (2): 633- 654 | | 14 | Jameson A . The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy. J Sci Comput, 2008, 34 (2): 152- 187 | | 15 | Dehghan M , Jazlanian R . On the total variation of a third-order semi-discrete central scheme for 1D conservation laws. J Vib Control, 2011, 17 (9): 1348- 1358 | | 16 | Puppo G A . Numerical entropy production for central schemes. SIAM J Sci Comput, 2003, 25 (4): 1382- 415 | | 17 | Tadmor E . Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer, 2003, 12, 451- 512 | | 18 | Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws//Quarteroni A. Advanced Numer Appr Nonli Hyper Equa. Berlin: Springer-Verlag, 2006: 325-432 | | 19 | Fjordholm U S , Mishra S , Tadmor E . Energy preserving and energy stable schemes for the shallow water equations. Found Comput Math, 2009, 363 (14): 93- 139 | | 20 | 陈雨风, 陈停停, 王振. 非等熵Chaplygin气体测度值解存在性. 数学物理学报, 2020, 40A (4): 833- 841 | | 20 | Chen Y F , Chen T T , Wang Z . The existence of the measure solution for the non-isentropic chaplygin gas. Acta Math Sci, 2020, 40A (4): 833- 841 | | 21 | 陈停停, 屈爱芳, 王振. 等熵Chaplygin气体的二维Riemann问题. 数学物理学报, 2017, 37A (6): 1053- 1061 | | 21 | Chen T T , Qu A F , Wang Z . The two-dimensional riemann problem for isentropic chaplygin gas. Acta Math Sci, 2017, 37A (6): 1053- 1061 | | 22 | 吴宏伟. 可压缩磁流体动力方程解的正则性. 数学物理学报, 2010, 30A (3): 593- 602 | | 22 | Wu H W . Regularity criteria for the compressible magneto-hydrodynamic equations. Acta Math Sci, 2010, 30A (3): 593- 602 | | 23 | Tadmor E . Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discret Contin Dyn syst, 2016, 36 (8): 4579- 4598 |
|