数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1311-1322.
收稿日期:
2020-08-13
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
刘辉
E-mail:haiyundengmath1989@njust.edu.cn;liuhuinanshi@qfnu.edu.cn;wenjingsong1@163.com
作者简介:
邓海云, E-mail: 基金资助:
Haiyun Deng1(),Hui Liu2,*(
),Wenjing Song3(
)
Received:
2020-08-13
Online:
2021-10-26
Published:
2021-10-08
Contact:
Hui Liu
E-mail:haiyundengmath1989@njust.edu.cn;liuhuinanshi@qfnu.edu.cn;wenjingsong1@163.com
Supported by:
摘要:
利用有限差分格式考虑了具有非齐次初边值条件的临界Schrödinger映射的数值解,证明了其收敛性及稳定性,并通过数值实验表明,格式具有较好的有效性和稳定性.
中图分类号:
邓海云,刘辉,宋文静. 临界Schrödinger映射非齐次初边值问题的有限差分格式[J]. 数学物理学报, 2021, 41(5): 1311-1322.
Haiyun Deng,Hui Liu,Wenjing Song. Finite Difference Scheme for the Nonhomogeneous Initial Boundary Value Problem of Critical Schrödinger Map[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1311-1322.
表 1
误差值表"
时间层 | 精确解 | 差分格式解 | 误差值 | 所需时间(s) |
1 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.017160 |
2 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.012998 |
3 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.011783 |
4 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011667 |
5 | 1.00+e00 | 1.00-6.66134e-16 | 6.66134e-16 | 0.011951 |
6 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011711 |
7 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.011630 |
8 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011647 |
9 | 1.00+e00 | 1.00-5.55112e-16 | 5.55112e-16 | 0.011787 |
10 | 1.00+e00 | 1.00-5.55112e-16 | 5.55112e-16 | 0.011690 |
11 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011579 |
12 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011576 |
13 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.011611 |
14 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.011501 |
15 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011609 |
16 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011973 |
17 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011524 |
18 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.012638 |
19 | 1.00+e00 | 1.00-4.44089e-16 | 4.44089e-16 | 0.011606 |
20 | 1.00+e00 | 1.00-3.33067e-16 | 3.33067e-16 | 0.011690 |
1 |
Angenent S B , Hulshof J , Matano H . The radius of vanishing bubbles in equivariant harmonic map flow from D2 to S2. SIAM J Math Anal, 2009, 41 (3): 1121- 1137
doi: 10.1137/070706732 |
2 | Bejenaru I , Ionescu A D , Kenig C E , Tataru D . Global Schrödinger maps in dimensions d ≥ 2:small data in the critical Sobolev spaces. Ann of Math, 2011, 173 (2): 1443- 1506 |
3 |
Cimrák I . Convergence result for the constraint preserving mid-point scheme for micromagnetism. J Comput Appl Math, 2009, 228 (1): 238- 246
doi: 10.1016/j.cam.2008.09.017 |
4 |
Dodson B , Smith P . A controlling norm for energy-critical Schrödinger maps. Trans Amer Math Soc, 2015, 367 (10): 7193- 7220
doi: 10.1090/S0002-9947-2015-06417-4 |
5 |
E W N , Wang X P . Numerical methods for the Landau-Lifshitz equation. SIAM J Numer Anal, 2000, 38 (5): 1647- 1665
doi: 10.1137/S0036142999352199 |
6 | Gilbarg D , Trudinger N S . Elliptic Partial Differential Equations of Second Order. New York: Springer-Verlag, 1983 |
7 |
Guo B L , Han Y Q . Global smooth solution of hydrodynamical equation for the Heisenberg paramagnet. Math Methods Appl Sci, 2004, 27 (2): 181- 191
doi: 10.1002/mma.450 |
8 |
Gustafson S , Kang K , Tsai T P . Schrödinger flow near harmonic maps. Comm Pure Appl Math, 2007, 60 (4): 463- 499
doi: 10.1002/cpa.20143 |
9 | Gustafson S , Kang K , Tsai T P . Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math J, 2008, 145 (3): 537- 583 |
10 |
Gustafson S , Kang K , Tsai T P . Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schrödinger maps on $\mathbb{R}.2$. Comm Math Phys, 2010, 300 (1): 205- 242
doi: 10.1007/s00220-010-1116-6 |
11 |
Jendrej J . Construction of two-bubble solutions for the energy-critical NLS. Anal PDE, 2017, 10 (8): 1923- 1959
doi: 10.2140/apde.2017.10.1923 |
12 |
Kim E , Lipnikov K . The mimetic finite difference method for the Landau-Lifshitz equation. J Comput Phys, 2017, 328, 109- 130
doi: 10.1016/j.jcp.2016.10.016 |
13 | Kim E. Numerical Methods for the Landau-Lifshitz Equation in Micromagnetics: The Mimetic Finite Difference Method and the Mass-Lumped Finite Element Method[D]. Berkeley: University of California, 2017 |
14 | Krieger J , Miao S . On the stability of blowup solutions for the critical corotational wave-map problem. Duke Math J, 2020, 169 (3): 435- 532 |
15 |
Li Z , Zhao L F . Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete Contin Dyn Syst, 2019, 39 (1): 607- 638
doi: 10.3934/dcds.2019025 |
16 |
Li P C , Xie C J , Du R , et al. Two improved Gauss-Seidel projection methods for Landau-Lifshitz-Gilbert equation. J Comput Phys, 2020, 401, 109046
doi: 10.1016/j.jcp.2019.109046 |
17 | 陆金甫, 关治. 偏微分方程数值解法. 北京: 清华大学出版社, 2004 |
Lu J F , Guan Z . Numerical Solution of Partial Differential Equations. Beijing: Tsinghua University Press, 2004 | |
18 | 吕永强. Landau-Lifshitz方程的有限差分格式与整体正则解[D]. 北京: 中国工程物理研究院, 2004 |
Lv Y Q. Finite Difference Format and the Overall Regular Solutions of Landau-Lifshitz Equations[D]. Beijing: Chinese Research Institute of Engineering Physics, 2004 | |
19 |
Merle F , Raphaël P , Rodnianski I . Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent Math, 2013, 193 (2): 249- 365
doi: 10.1007/s00222-012-0427-y |
20 |
Mu C L , Liu L M , Wu Y H , Yan L . Some new results for the multidimensional Landau-Lifshitz equations. Phys Lett A, 2008, 372 (43): 6469- 6474
doi: 10.1016/j.physleta.2008.09.006 |
21 |
Perelman G . Blow up dynamics for equivariant critical Schrödinger maps. Comm Math Phys, 2014, 330 (1): 69- 105
doi: 10.1007/s00220-014-1916-1 |
22 |
Sanchez D . Numerical study of long waves in ferromagnetic media. Numer Methods Partial Differential Equations, 2006, 22 (5): 1127- 1148
doi: 10.1002/num.20142 |
23 |
van den Berg J B , Hulshof J , King J R . Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J Appl Math, 2003, 63 (5): 1682- 1717
doi: 10.1137/S0036139902408874 |
24 | 杨干山, 刘宪高. Landau-Lifshitz方程派生的球面锥对称族及其演化. 中国科学: 数学, 2011, 41 (2): 181- 196 |
Yang G S , Liu X G . Spherical cone symmetric families generated by Landau-Lifshitz equation and their evolution. Sci Sin Math, 2011, 41 (2): 181- 196 | |
25 |
Yang G S . The difference between Schrödinger equation derived from Schrödinger map and Landau-Lifshitz equation. Phys Lett A, 2012, 376 (4): 231- 235
doi: 10.1016/j.physleta.2011.11.003 |
26 | 杨干山, 吴继晖, 郭柏灵. 具有二阶逼近效应场多维Landau-Lifshitz方程解的极限行为. 中国科学: 数学, 2013, 43, 445- 476 |
Yang G S , Wu J H , Guo B L . Limiting behavior of solutions to multidimensional Landau-Lifshitz equations with second approximation of effective field. Sci Sin Math, 2013, 43, 445- 476 | |
27 |
Yang W , Wang D L , Yang L . A stable numerical method for space fractional Landau-Lifshitz equations. Appl Math Lett, 2016, 61, 149- 155
doi: 10.1016/j.aml.2016.05.014 |
28 | Zhou Y L , Guo B L , Tan S B . Existence and uniqueness of smooth solution for system of ferro-magnetic chain. Sci China Ser A, 1991, 34 (3): 257- 266 |
[1] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[2] | 梁青. 两类带 Markov 切换的随机比例泛函微分方程全局解的存在唯一性和稳定性[J]. 数学物理学报, 2025, 45(4): 1184-1205. |
[3] | 王琼琼, 唐嘉. 基于切比雪夫多项式加速求解 PageRank 的类海森伯格算法[J]. 数学物理学报, 2025, 45(4): 1291-1300. |
[4] | 于冬梅, 刘大熠. 求解广义互补问题的 Levenberg-Marquardt 算法[J]. 数学物理学报, 2025, 45(4): 1311-1326. |
[5] | 刘佳, 包雄雄. 非局部时滞扩散方程棱锥形波前解的渐近稳定性[J]. 数学物理学报, 2025, 45(1): 44-53. |
[6] | 肖江龙, 宋永利, 夏永辉. 一个扩散模型中恐惧效应与集群行为协同诱导的时空动力学研究[J]. 数学物理学报, 2024, 44(6): 1577-1594. |
[7] | 马昌凤, 谢亚君, 卜凡. 求解Stein张量方程的张量格式BCGSTAB算法[J]. 数学物理学报, 2024, 44(6): 1652-1664. |
[8] | 张咏雪, 贾文生. 有限理性下广义多目标多主多从博弈受控系统解的稳定性[J]. 数学物理学报, 2024, 44(6): 1689-1702. |
[9] | 杨红, 张晓光. 单纯复形上的随机 SIS 传染病模型[J]. 数学物理学报, 2024, 44(5): 1392-1399. |
[10] | 王俊杰. 空间分数阶 KGS 方程组的辛差分格式[J]. 数学物理学报, 2024, 44(5): 1319-1334. |
[11] | 樊天娇, 冯立超, 杨艳梅. 不等式的推广以及在加性时变时滞系统中的应用[J]. 数学物理学报, 2024, 44(5): 1335-1351. |
[12] | 郭燕, 徐小川. 基于混合谱数据的不连续Sturm-Liouville逆谱问题局部可解性和稳定性[J]. 数学物理学报, 2024, 44(4): 859-870. |
[13] | 潘丽君, 吕顺, 翁莎莎. 耦合Aw-Rascle-Zhang模型的Riemann解及其稳定性[J]. 数学物理学报, 2024, 44(4): 885-895. |
[14] | 马小军, 陈富, 贾芝福. 基于非 Lipschitz 步长策略的临近分裂可行问题的强收敛性研究[J]. 数学物理学报, 2024, 44(4): 1052-1065. |
[15] | 简金宝, 代钰, 尹江华. 分裂可行性问题的一个惯性共轭梯度投影法[J]. 数学物理学报, 2024, 44(4): 1066-1079. |
|