| 1 | Bisi M , Ca?izo J A , Lods B . Entropy dissipation estimates for the linear Boltzmann operator. J Funct Anal, 2015, 269 (4): 1028- 1069 | | 2 | Ca?izo J A , Einav A , Lods B . On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials. J Math Anal Appl, 2018, 462 (1): 801- 839 | | 3 | Lods B , Mokhtar-Kharroubi M . Convergence to equilibrium for linear spatially homogeneous Boltzmann equation with hard and soft potentials: a semigroup approach in $L^{1}$-spaces. Math Meth Appl Sci, 2017, 40 (18): 6527- 6555 | | 4 | Lods B , Mouhot C , Toscani G . Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models. Kinet Relat Models, 2008, 1 (2): 223- 248 | | 5 | Bisi M , Ca?izo J A , Lods B . Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath. SIAM J Math Anal, 2011, 43 (6): 2640- 2674 | | 6 | Ca?izo J A , Lods B . Exponential trend to equilibrium for the inelastic Boltzmann equation driven by a particle bath. Nonlinearity, 2016, 29 (5): 1687- 1715 | | 7 | Mouhot C , Neumann L . Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity, 2006, 19 (4): 969- 998 | | 8 | Gualdani M P, Mischler S, Mouhot C. Factorization of non-symmetric operators and exponential H-theorem. 2010, arXiv: 1006.5523 | | 9 | Mischler S , Mouhot C . Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation. Arch Ration Mech Anal, 2016, 221 (2): 677- 723 | | 10 | Tristani I . Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off. J Stat Phys, 2014, 157 (3): 474- 496 | | 11 | Hérau F , Tonon D , Tristani I . Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off. Commun Math Phys, 2020, 377 (1): 697- 771 | | 12 | Carrapatoso K . Exponential convergence to equilibrium for the homogenenous Landau equation with hard potentials. Bull Sci Math, 2015, 139 (7): 777- 805 | | 13 | Carrapatoso K , Tristani I , Wu K C . Cauchy problem and exponential stability for the inhomogeneous Landau equation. Arch Ration Mech Anal, 2016, 221 (1): 363- 418 | | 14 | Li F C , Sun B Y . Optimal exponential decay for the linearized ellipsoidal BGK model in weighted Sobolev spaces. J Stat Phys, 2020, 181 (2): 690- 714 | | 15 | Li F C , Wu K C . Semigroup decay of the linearized Boltzmann equation in a torus. J Differential Equations, 2016, 260 (3): 2729- 2749 | | 16 | Wu K C . Pointwise behavior of the linearized Boltzmann equation on a torus. SIAM J Math Anal, 2014, 46 (1): 639- 656 | | 17 | Ca?izo J A , Cao C Q , Evans J , Yolda? H . Hypocoercivity of linear kinetic equations via Harris's theorem. Kinet Relat Models, 2020, 13 (1): 97- 128 | | 18 | Alonso A , Morimoto Y , Sun W R , Yang T . Non-cutoff Boltzmann equation with polynomial decay perturbations. Rev Mat Iberoam, 2021, 37 (1): 189- 292 | | 19 | Desvillettes L , Mouhot C . Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch Ration Mech Anal, 2009, 193 (2): 227- 253 | | 20 | Mouhot C , Strain R M . Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J Math Pures Appl, 2007, 87 (5): 515- 535 | | 21 | Mouhot C . Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun Partial Differ Equ, 2006, 31 (9): 1321- 1348 | | 22 | Yang T , Yu H J . Spectrum analysis of some kinetic equations. Arch Ration Mech Anal, 2016, 222 (2): 731- 768 | | 23 | Sun B Y . Exponential convergence for the linear homogeneous Boltzmann equation for hard potentials. Appl Math Comput, 2018, 339, 727- 737 |
|