| 1 | Gao J G , Zhang C , Wang J L . Analysis of a reaction-diffusion SVIR model with a fixed latent period and non-local infections. Appl Anal, 2020, | | 2 | Thieme H R , Zhao X Q . A non-local delayed and diffusive predator-prey model. Nonlinear Anal RWA, 2001, 2, 145- 160 | | 3 | Lou Y J , Zhao X Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol, 2011, 62, 543- 568 | | 4 | Xu Z T , Zhao X Q . A vector-bias malaria model with incubation period and diffusion. Discrete Contin Dyn Syst Ser B, 2012, 17 (7): 2615- 2634 | | 5 | Xu Z T , Zhao Y Y . A diffusive dengue disease model with nonlocal delayed transmission. Appl Math Comput, 2015, 270, 808- 829 | | 6 | Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51, 102988 | | 7 | Li F X , Zhao X Q . Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. J Differ Equa, 2021, 272, 127- 163 | | 8 | McCluskey C C , Yang Y . Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal RWA, 2015, 25, 64- 78 | | 9 | Shu H Y , Chen Y M , Wang L . Impacts of the cell-free and cell-to-cell infection modes on viral dynamics. J Dyn Differ Equa, 2018, 30, 1817- 1836 | | 10 | Yang Y , Zou L , Ruan S G . Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math Biosci, 2015, 270, 183- 191 | | 11 | He G F , Wang J B , Huang G . Wave propagation of a diffusive epidemic model with latency and vaccination. Appl Anal, 2021, 100, 1972- 1995 | | 12 | Wang L W , Liu Z J , Zhang X A . Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence. Appl Math Comput, 2016, 284, 47- 65 | | 13 | Xu R . Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl Math Model, 2012, 36 (11): 5293- 5300 | | 14 | 张鑫喆, 贺国峰, 黄刚. 一类具有接种和潜伏期的传染病模型及动力学分析. 数学物理学报, 2019, 39A (5): 1247- 1259 | | 14 | Zhang X Z , He G F , Huang G . Dynamical properties of a delayed epidemic model with vaccination and saturation incidence. Acta Math Sci, 2019, 39A (5): 1247- 1259 | | 15 | Liu X N , Takeuchi Y , Iwami S . SVIR epidemic models with vaccination strategies. J Theor Biol, 2008, 253 (1): 1- 11 | | 16 | Xu Z T , Xu Y Q , Huang Y H . Stability and traveling waves of a vaccination model with nonlinear incidence. Comput Math Appl, 2018, 75 (2): 561- 581 | | 17 | Guo Z M , Wang F B , Zou X F . Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J Math Biol, 2012, 65, 1387- 1410 | | 18 | Zhang L , Wang Z C , Zhao X Q . Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differ Equa, 2015, 258, 3011- 3036 |
|