| 1 | Daniel H K . From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov. Comm Math Phys, 2013, 324 (3): 961- 993 | | 2 | Dendy R O . Plasma Dynamics. Oxford: Oxford University Press, 1990 | | 3 | Kono M , Skoric M M , Ter Haar D . Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma. J Plasma Phys, 1981, 26: 123- 146 | | 4 | Zakharov V E . The collapse of Langmuir waves. Soviet Phys, 1972, 35: 908- 914 | | 5 | Zakharov V E , Musher S L , Rubenchik A M . Hamiltonian approach to the description of nonlinear plasma phenomena. Phys Rep, 1985, 129 (5): 285- 366 | | 6 | Gan Z H , Zhang J . Nonlocal nonlinear Schr?dinger equations in R3. Arch Rational Mech Anal, 2013, 209: 1- 39 | | 7 | Laurey C . The Cauchy problem for a generalized Zakharov system. Differ Integral Equa, 1995, 8 (1): 105- 130 | | 8 | Miao C X , Zhang B . Harmonic Analysis Method of Partial Differential Equations. Beijing: Science Press, 2008 | | 9 | Zhang J Y , Han L J , Guo B L . On the nonlinear Schr?dinger limit of the magnetic Zakharov system. Nonlinear Anal TMA, 2012, 75 (10): 4090- 4103 | | 10 | Cazenave T . Semilinear Schr?dinger Equations. Providence RI: Amer Math Soc, 2003 | | 11 | 韩娅玲, 向建林. 一类分数阶p-Laplace方程基态解的存在性及其渐近行为. 数学物理学报, 2020, 40A (6): 1622- 1633 | | 11 | Han Y L , Xiang J L . Existence and asymptotic behavior of ground state for fractional p-Laplacian equations. Acta Math Sci, 2020, 40A (6): 1622- 1633 | | 12 | Merle F , Rapha?l P . Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schr?dinger equation. Ann of Math, 2005, 16: 157- 222 | | 13 | 肖常旺, 郭飞. 一类半线性波动方程的适定性. 数学物理学报, 2020, 40A (6): 1568- 1589 | | 13 | Xiao C W , Guo F . Global existence and blowup phenomena for a semilinear wave equation with time-dependent damping and mass in exponentially weighted spaces. Acta Math Sci, 2020, 40A (6): 1568- 1589 | | 14 | Glassey R T . On the blowing up of solutions to the Cauchy problem for nonlinear Schr?dinger equations. J Math Phys, 1977, 18: 1794- 1797 | | 15 | Guo B L , Zhang J Y . Well-posedness of the Cauchy problem for the magnetic Zakharov type system. Nonlinearity, 2011, 24: 2191- 2210 | | 16 | Zhang J Y , Guo C X , Guo B L . On the Cauchy problem for the magnetic Zakharov system. Monatshefte Fur Mathematik, 2013, 170 (1): 89- 111 | | 17 | Gan Z H , Ma Y S , Zhong T . Some remarks on the blow-up rate for the 3D magnetic Zakharov system. J Funct Anal, 2015, 269 (8): 2505- 2529 | | 18 | Feng B , Cai Y . Concentration for blow-up solutions of the Davey-Stewartson system in R3. Nonlinear Anal-RWA, 2015, 26: 330- 342 | | 19 | Feng B , Ren J , Wang K . Blow-up in several points for the Davey-Stewartson system in R2. J Math Anal Appl, 2018, 466 (2): 1317- 1326 | | 20 | Li S , Li Y , Yan W . A global existence and blow-up threshold for Davey-Stewartson equations in R3. Discrete Contin Dyn Syst Ser S, 2016, 9 (6): 1899- 1912 | | 21 | 邱雯, 张贻民, AbdelgadirA A. 一类相对非线性薛定谔方程解的存在性. 数学物理学报, 2019, 39A (1): 95- 104 | | 21 | Qiu W , Zhang Y M , Abdelgadir A A . Existence of nontrivial solutions for a class of relativistic nonlinear Schrodinger equations. Acta Math Sci, 2019, 39A (1): 95- 104 | | 22 | Zhang J , Zhu S . Sharp blow-up criteria for the Davey-Stewartson system in R3. Dynamics of Partial Differential Equations, 2011, 8 (3): 239- 260 | | 23 | Lou S Y , Qiao Z J . Alice-Bob peakon systems. Chinese Physics Letters, 2017, 34: 100201 | | 24 | Kwong M K . Uniqueness of positive solutions of δu - u + up = 0 in Rn. Arch Rational Mech Anal, 1989, 105: 243- 266 | | 25 | Weinstein M I . Nonlinear Schr?dinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567- 576 | | 26 | Oh Y G . Cauchy problem and Ehrenfest's law of nonlinear Schr?dinger equations with potentials. J Differential Equations, 1989, 81: 255- 274 | | 27 | Fibich G , Merle F , Rapha?l P . Numerical proof of a spectral property related to singularity formulation for the L2-critical nonlinear Schr?dinger equation. Physica D, 2006, 220: 1- 13 | | 28 | Merle F , Rapha?l P . On a sharp lower bound on the blow-up rate for the L2-critical nonlinear Schr?dinger equation. J Amer Math Soc, 2006, 19: 37- 90 |
|