| 1 | Hale J K , Lunel S M . Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993 |
| 2 | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematical Society, 1988 |
| 3 | Caraballo T , Kloeden P E , Real J . Pullback and forward attractors for a damped wave equation with delays. Stoch Dyn, 2004, 4: 405- 423 |
| 4 | Caraballo T , Real J . Attractors for 2D-Navier-Stokes models with delays. J Differential Equations, 2004, 205: 271- 297 |
| 5 | Caraballo T , Marín-Rubio P , Valero J . Autonomous and non-autonomous attractors for differential equations with delays. J Differential Equations, 2005, 208: 9- 41 |
| 6 | Caraballo T , Marín-Rubio P , Valero J . Attractors for differential equations with unbounded delays. J Differential Equations, 2007, 239: 311- 342 |
| 7 | Caraballo T , Real J , Márquez A M . Three-dimensional system of globally modified Navier-Stokes equations with delay. Internat J Bifur Chaos Appl Sci Engrg, 2010, 20: 2869- 2883 |
| 8 | Caraballo T , Kloeden P E , Marín-Rubio P . Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete Contin Dyn Syst, 2007, 19: 177- 196 |
| 9 | García-Luengo J , Marín-Rubio P . Reaction-diffusion equations with non-autonomous force in H-1 and delays under measurability conditions on the driving delay term. J Math Anal Appl, 2014, 417: 80- 95 |
| 10 | García-Luengo J , Marín-Rubio P , Real J . Pullback attractors for 2D Navier-Stokes equations with delays and their regularity. Adv Nonlinear Stud, 2013, 13: 331- 357 |
| 11 | García-Luengo J , Marín-Rubio P , Real J . Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Commun Pure Appl Anal, 2015, 14: 1603- 1621 |
| 12 | García-Luengo J , Marín-Rubio P , Planas G . Attractors for a double time-delayed 2D-Navier-Stokes model. Discrete Contin Dyn Syst, 2014, 34: 4085- 4105 |
| 13 | García-Luengo J , Marín-Rubio P , Real J . Regularity of pullback attractors and attraction in H1 in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete Contin Dyn Syst, 2014, 34: 181- 201 |
| 14 | Kloeden P E , Marín-Rubio P . Equi-attraction and the continuous dependence of attractors on time delays. Discrete Contin Dyn Syst Ser B, 2008, 9: 581- 593 |
| 15 | Marín-Rubio P , Márquez-Durán A M , Real J . Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete Contin Dyn Syst, 2011, 31: 779- 796 |
| 16 | Wu F , Kloeden P E . Mean-square random attractors of stochastic delay differential equations with random delay. Discrete Contin Dyn Syst Ser B, 2013, 18: 1715- 1734 |
| 17 | Wang Y J , Kloeden P E . The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete Contin Dyn Syst, 2014, 34: 4343- 4370 |
| 18 | Wang Y J . Pullback attractors for a damped wave equation with delays. Stoch Dyn, 2015, 15: 1550003 |
| 19 | Wang J T , Zhao C D , Caraballo T . Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays. Commun Nonlinear Sci Numer Simul, 2020, 91: 105459 |
| 20 | Zhao C D , Liu G W , An R . Global well-posedness and pullback attractors for an incompressible non-Newtonian fluid with infinite delays. Differ Equ Dyn Syst, 2017, 25: 39- 64 |
| 21 | Zhu K X , Xie Y Q , Zhou F . Pullback attractors for a damped semilinear wave equation with delays. Acta Math Sin, 2018, 34: 1131- 1150 |
| 22 | Kloeden P E . Upper semi continuity of attractors of delay differential equations in the delay. Bull Austral Math Soc, 2006, 73: 299- 306 |
| 23 | Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969 |
| 24 | Wang C Z , Zhang M S , Zhao C D . Existence of the uniform trajectory attractor for a 3D incompressible non-Newtonian fluid flow. Acta Math Sci, 2018, 38B: 187- 202 |
| 25 | Zhao C D , Zhou S F , Liao X Y . Uniform attractors for nonautonomous incompressible non-Newtonian fluid with locally uniform integrable external forces. J Math Phys, 2006, 47: 052701 |
| 26 | Zhao C D , Jia X L , Yang X B . Uniform attractor for nonautonomous incompressible non-Newtonian fluid with a new class of external forces. Acta Math Sci, 2011, 31B: 1803- 1812 |
| 27 | Temam R . Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997 |
| 28 | Thanh D T P . Asymptotic behavior of solutions to semilinear parabolic equations with infinite delay. Acta Math Vietnam, 2019, 44: 875- 892 |
| 29 | Arrieta J , Carvalho A N , Hale J K . A damped hyperbolic equation with critical exponent. Comm Partial Differential Equations, 1992, 17: 841- 866 |
| 30 | Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992 |
| 31 | Ball J M . Global attractors for damped semilinear wave equations. Discrete Contin Dyn Syst, 2004, 10: 31- 52 |
| 32 | Kalantarov V , Savostianov A , Zelik S . Attractors for damped quintic wave equations in bounded domains. Ann Henri Poincaré, 2016, 17: 2555- 2584 |
| 33 | Burq N , Lebeau G , Planchon F . Global existence for energy critical waves in 3-D domains. J Amer Math Soc, 2008, 21: 831- 845 |
| 34 | Blair M D , Smith H F , Sogge C D . Strichartz estimates for the wave equation on manifolds with boundary. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 1817- 1829 |
| 35 | Burq N , Planchon F . Global existence for energy critical waves in 3-D domains: Neumann boundary conditions. Amer J Math, 2009, 131: 1715- 1742 |
| 36 | Zhu K X , Xie Y Q , Mei X Y . Pullback attractors for a sup-cubic weakly damped wave equation with delays. Discrete Contin Dyn Syst Ser B, 2021, 26: 4433- 4458 |
| 37 | Chueshov I , Lasiecka I . Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping. J Differential Equations, 2007, 233: 42- 86 |
| 38 | Khanmamedov A K . Global attractors for von Karman equations with nonlinear interior dissipation. J Math Anal Appl, 2006, 318: 92- 101 |
| 39 | Kloeden P E , Lorenz T . Pullback incremental attraction. Nonauton Dyn Syst, 2014, (1): 53- 60 |
| 40 | Sun C Y , Cao D M , Duan J Q . Uniform attractors for nonautonomous wave equations with nonlinear damping. SIAM J Appl Dyn Syst, 2006, 6: 293- 318 |
| 41 | Xie Y Q , Li Q S , Zhu K X . Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal Real World Appl, 2016, 31: 23- 37 |
| 42 | Zhou F , Sun C Y , Li X . Dynamics for the damped wave equations on time-dependent domains. Discrete Contin Dyn Syst Ser B, 2018, 23: 1645- 1674 |
| 43 | Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physis. Providence: American Mathematical Society, 2002 |
| 44 | Zelik S . Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete Contin Dyn Syst B, 2015, 20: 781- 810 |
| 45 | Mei X Y , Sun C Y . Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R} ^{3}$. Discrete Contin Dyn Syst Ser B, 2019, 24: 4117- 4143 |
| 46 | Mei X Y , Sun C Y . Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity. Appl Math Lett, 2019, 95: 179- 185 |