| 1 | Arditi R , Ginzburg L R . Coupling in predator-prey dynamics: Ratio-dependence. Journal of Theoretical Biology, 1989, 139 (3): 311- 326 | | 2 | Basener W. Topology and Its Applications. Hoboken, NJ: John Wiley & Sons, 2006 | | 3 | Celik C . Stability and Hopf Bifurcation in a delayed ratio dependent Holling-Tanner type model. Applied Mathematics and Computation, 2015, 255: 228- 237 | | 4 | Chen F . On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. Journal of Computational and Applied Mathematics, 2005, 180 (1): 33- 49 | | 5 | Denaro G , Valenti D , La Cognata A , et al. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecological Complexity, 2013, 13: 21- 34 | | 6 | Ding W , Huang W Z . Global dynamics of a ratio-dependent holling-tanner predator-prey system. Journal of Mathematical Analysis and Applications, 2018, 460 (1): 458- 475 | | 7 | Dubkov A A , Spagnolo B . Verhulst model with lévy white noise excitation. The European Physical Journal B, 2008, 65 (3): 361- 367 | | 8 | Falci G, La Cognata A, Berritta M, et al. Design of a lambda system for population transfer in superconducting nanocircuits. Physical Review B, 2013, 87, ID: 214515 | | 9 | Feistel R, Ebeling W. Evolution of Complex System. Dordrecht: Kluwer, 1989 | | 10 | Freeze M , Chang Y , Feng W . Analysis of dynamics in a complex food chain with ratio-dependent functional response. Journal of Applied Analysis & Computation, 2014, 4 (1): 69- 87 | | 11 | Garay J , Cressman R , Xu F , et al. Optimal forager against ideal free distributed prey. The American Naturalist, 2015, 186 (1): 111- 122 | | 12 | Giuffrida A , Valenti D , Ziino G , et al. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. European Food Research and Technology, 2009, 228 (5): 767- 775 | | 13 | Gopalsamy K , Weng P . Global attractivity in a competition system with feedback controls. Computers and Mathematics with Applications, 2003, 45 (4/5): 665- 676 | | 14 | Haken H . Advanced Synergetics. Berlin: Springer, 1985 | | 15 | Horsthemke W , Lefever R . Noise-Induced Transitions. Theory and Applications in Physics. Chemistry, and Biology. Berlin: Springer, 1984 | | 16 | Khalil H K. Nonlinear Systems. Englewood Cliffs: Prentice-Hall, 2002 | | 17 | Liang Z Q , Pan H W . Qualitative analysis of a ratio-dependent holling-tanner model. Journal of Mathematical Analysis & Applications, 2007, 334 (2): 954- 964 | | 18 | Liang Z Q , Zeng X P , Pang G P , Liang Y H . Periodic solution of a leslie predator-prey system with ratio-dependent and state impulsive feedback control. Nonlinear Dynamics, 2017, 89 (4): 2941- 2955 | | 19 | Louartassi Y , Alla A , Hattaf K , Nabil A . Dynamics of a predator-prey model with harvesting and reserve area for prey in the presence of competition and toxicity. Journal of Applied Mathematics and Computing, 2019, 59 (1/2): 305- 321 | | 20 | Lu G , Lu Z , Lian X . Delay effect on the permanence for lotka-volterra cooperative systems. Nonlinear Analysis: Real World Applications, 2010, 11 (4): 2810- 2816 | | 21 | Mikhaylov A N , Gryaznov E G , Belov A L , et al. Field- and irradiation-induced phenomena in memristive nanomaterials. Physica Status Solidi (c), 2016, 13: 870- 881 | | 22 | Muhammadhaji A , Teng Z , Rehim M . Dynamical behavior for a class of delayed competitive-mutualism systems. Differential Equations and Dynamical Systems, 2015, 23 (3): 281- 301 | | 23 | Nakata Y , Muroya Y . Permanence for nonautonomous Lotka-Volterra cooperative systems with delays. Nonlinear Analysis: Real World Applications, 2010, 11 (1): 528- 534 | | 24 | Nicolis G , Prigogine L . Self-Organization in Non-Equilibrium Systems. New Jersey: Wiley, 1977 | | 25 | Nie L , Teng Z , Hu L , Peng J G . Permanence and stability in non-autonomous predator-prey Lotka-Volterra systems with feedback controls. Computers & Mathematics with Applications, 2009, 58 (3): 436- 448 | | 26 | Shen C X , You M S . Permanence and extinction of a three-species ratio-dependent food chain model with delay and prey diffusion. Applied Mathematics and Computation, 2010, 217 (5): 1825- 1830 | | 27 | Spagnolo B , La Barbera A . Role of the noise on the transient dynamics of an ecosystem of interacting species. Physica A: Statistical Mechanics and its Applications, 2002, 315 (1/2): 114- 124 | | 28 | Spagnolo B , Dubkov A A , Pankratov A L , et al. Lifetime of metastable states and suppression of noise in interdisciplinary physical models. Acta Physica Polonica B, 2007, 38 (5): 1925- 1950 | | 29 | Spagnolo B , Valenti D . Volatility effects on the escape time in financial market models. International Journal of Bifurcation and Chaos, 2008, 18 (9): 2775- 2786 | | 30 | Valenti D , Schimansky-Geier L , Sailer X , Spagnolo B . Moment equations for a spatially extended system of two competing species. The European Physical Journal B, 2006, 50 (1/2): 199- 203 | | 31 | Wang C Y , Li N , Zhou Y , Pu X , Li R . On a multi-delay lotka-volterra predator-prey model with feedback controls and prey diffusion. Acta Mathematica Scientia, 2019, 39B (2): 429- 448 | | 32 | Wang C Y, Zhou Y Q, Li Y H, Li R. Well-posedness of a ratio-dependent lotka-volterra system with feedback control. Boundary Value Problems, 2018, 2018, ID: 117 | | 33 | Xu F , Cressman R , K?ivan V . Evolution of mobility in predator-prey systems. Discrete and Continuous Dynamical Systems-Series B, 2014, 19 (10): 3397- 3432 | | 34 | Xu J, Chen F. Permanence of a Lotka-Volterra cooperative system with time delays and feedback controls. Communications in Mathematical Biology & Neuroscience, 2015, 2015, ID: 18 | | 35 | Xu R , Chaplain M . Persistence and global stability in a delayed predator-prey system with michaelis-menten type functional response. Applied Mathematics and Computation, 2002, 130 (1): 441- 455 | | 36 | Xu R , Chen L S . Ersistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback. Journal of Mathematical Analysis and Applications, 2001, 262 (1): 50- 61 | | 37 | Zhou J , Mu C . Coexistence of a diffusive predator-prey model with holling type-Ⅱ functional response and density dependent mortality. Journal of Mathematical Analysis and Applications, 2012, 385 (2): 913- 927 | | 38 | Zhang Q M, Zhang X J, Yang H F. Global dissipativity of stochastic Lotka-Volterra system with feedback controls. International Journal of Biomathematics, 2017, 10(2), ID: 1750022 |
|