| 1 | Alfaro M , Berestycki H , Raoul G . The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition. SIAM J Math Anal, 2017, 49 (1): 562- 596 | | 2 | Bates P W , Fife P C , Ren X , Wang X . Traveling waves in a convolution model for phase transitions. Arch Rational Mech Anal, 1997, 138 (2): 105- 136 | | 3 | Berestycki H , Diekmann O , Nagelkerke C , Zegeling P . Can a species keep pace with a shifting climate?. Bull Math Biol, 2009, 71: 399- 429 | | 4 | Berestycki H , Fang J . Forced waves of the Fisher-KPP equation in a shifting environment. J Differential Equations, 2018, 264 (3): 2157- 2183 | | 5 | Berestycki H , Rossi L . Reaction-diffusion equations for population dynamics with forced speed I-The case of the whole space. Discrete Contin Dyn Syst, 2008, 21: 41- 67 | | 6 | Berestycki H , Rossi L . Reaction-diffusion equations for population dynamics with forced speed Ⅱ-Cylindrical-type domains. Discrete Contin Dyn Syst, 2009, 25: 19- 61 | | 7 | Carr J , Chmaj A . Uniqueness of travelling waves for nonlocal monostable equations. Proc Amer Math Soc, 2004, 132: 2433- 2439 | | 8 | Chen X . Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv Differential Equations, 1997, 2 (1): 125- 160 | | 9 | Cheng H , Yuan R . Stability of traveling wave fronts for nonlocal diffusion equation with delayed nonlocal response. Taiwanese J Math, 2016, 20: 801- 822 | | 10 | Cheng H , Yuan R . Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete Contin Dyn Syst, 2017, 22 (7): 3007- 3022 | | 11 | Cheng H , Yuan R . Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete Contin Dyn Syst, 2017, 37 (10): 5422- 5454 | | 12 | Cheng H , Yuan R . Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed transmission. J Evol Equ, 2017, 17: 979- 1002 | | 13 | Cheng H , Yuan R . Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion. Appl Math Comput, 2018, 338 (1): 12- 24 | | 14 | Coville J , Dupaigne L . Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Anal, 2005, 60 (5): 797- 819 | | 15 | Coville J , Dupaigne L . On a non-local equation arising in population dynamics. Proc Roy Soc Edinburgh Sect A, 2007, 137 (4): 727- 755 | | 16 | Fang J , Lou Y , Wu J . Can pathogen spread keep pace with its host invasion?. SIAM J Appl Math, 2016, 76 (4): 1633- 1657 | | 17 | Hu H , Yi T , Zou X . On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment. Proc Amer Math Soc, 2020, 148 (1): 113- 221 | | 18 | Hu H , Zou X . Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc Amer Math Soc, 2017, 145 (11): 4763- 4771 | | 19 | Hutson V , Grinfeld M . Non-local dispersal and bistability. European J Appl Math, 2006, 17 (2): 221- 232 | | 20 | Hutson V , Shen W , Vickers G . Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence. Rocky Mountain J Math, 2008, 38 (4): 1147- 1175 | | 21 | Li B , Bewick S , Shang J , Fagan W F . Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math, 2014, 74 (5): 1397- 1417 | | 22 | Li W , Wang J , Zhao X . Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J Nonlinear Sci, 2018, 28 (4): 1189- 1219 | | 23 | Murray J D. Mathematical Biology. Ⅱ: Spatial Models and Biomedical Applications. New York: Springer-Verlag, 2003 | | 24 | Van Der Waals J D. On the continuity of the gaseous and liquid states. Translated from the Dutch. Edited and with an introduction by Rowlinson J S. Studies in Statistical Mechanics. Amsterdam: North-Holland Publishing Co, 1988 | | 25 | Vo H H . Persistence versus extinction under a climate change in mixed environments. J Differential Equations, 2015, 259 (10): 4947- 4988 | | 26 | Wang J , Zhao X . Uniqueness and global stability of forced waves in a shifting environment. Proc Amer Math Soc, 2019, 147: 1467- 1481 | | 27 | Wu C , Yang Y , Wu Z . Existence and uniqueness of forced waves in a delayed reaction-diffusion equation in a shifting environment. Nonlinear Analysis: Real World Applications, 2021, 57: 103198 | | 28 | Wu J , Zou X . Traveling wave fronts of reaction-diffusion systems with delay. J Dynam Differential Equations, 2001, 13 (3): 651- 687 | | 29 | Zhang G , Zhao X . Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J Differential Equations, 2020, 268 (6): 2852- 2885 |
|