| 1 | Ahn J , Yoon C . Global well-posedness and stability of constant equilibria in parabolicelliptic chemotaxis systems without gradinet sensing. Nonlinearity, 2019, 32 (4): 1327- 1351 |
| 2 | Amann H . Dynamic theory of quasilinear parabolic equations. Ⅱ: Reaction-diffusion systems. Differ Integral Equ, 1990, 3: 13- 75 |
| 3 | Amann H. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems// Schmeisser H, Triebel H. Function Spaces, Differential Operators and Nonlinear Analysis. Wiesbaden: Vieweg+Teubner Verlag, 1993, 133: 9-126 |
| 4 | Bellomo N , Bellouquid A , Tao Y S , Winkler M . Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci, 2015, 25: 1663- 1763 |
| 5 | Chaplain M, Anderson A. Mathematical modelling of tissue invasion//Preziosi L. Cancer Modelling and Simulation. Boca Raton, FL: Chapman Hall/CRC, 2003: 269-297 |
| 6 | Cie'slak T , Stinner C . Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Diff Equ, 2012, 252: 5832- 5851 |
| 7 | Cie'slak T , Stinner C . New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. J Diff Equ, 2015, 258: 2080- 2113 |
| 8 | Cie'slak T , Winkler M . Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity, 2008, 21: 1057- 1076 |
| 9 | Cie'slak T , Winkler M . Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nolinear Anal, 2017, 159: 129- 144 |
| 10 | Cie'slak T , Winkler M . Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal Real World Appl, 2017, 35: 1- 19 |
| 11 | Fu X , Tang L , Liu C , et al. Stripe formation in bacterial system with density-suppressed motility. Phys Rev Lett, 2012, 108: 198102 |
| 12 | Fujie K , Ito A , Yokota T . Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type. Adv Math Sci Appl, 2014, 24: 67- 84 |
| 13 | Fujie K , Ito A , Winkler M , Yokota T . Stabilization in a chemotaxis model for tumor invasion. Discrete Contin Dyn Syst, 2016, 36: 151- 169 |
| 14 | Herrero M A , Vel'azquez J L . A blow-up mechanism for a chemotaxis model. Ann Scuola Norm Sup Pisa Cl Sci, 1997, 24: 633- 683 |
| 15 | Hillen T , Potapov A . The one-dimensional chemotaxis model: global existence and asymptotic profile. Math Methods Appl Sci, 2004, 27: 1783- 1801 |
| 16 | Horstmann D , Winkler M . Boundedness vs blow-up in a chemotaxis system. J Diff Equ, 2005, 215: 52- 107 |
| 17 | Hu B , Tao Y S . To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math Models Methods Appl Sci, 2016, 26: 2111- 2128 |
| 18 | Ishida S , Seki K , Yokota T . Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J Diff Equ, 2014, 256: 2993- 3010 |
| 19 | J$\ddot{\rm a}$ger W , Luckhaus S . On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans Amer Math Soc, 1992, 329: 819- 824 |
| 20 | Jin H Y , Kim Y J , Wang Z A . Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J Appl Math, 2018, 78: 1632- 1657 |
| 21 | Jin H Y , Liu Z , Shi S . Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal Real World Appl, 2018, 44: 18- 39 |
| 22 | Jin H Y , Liu Z , Shi S , Xu J . Boundedness and stabilization in two-species chemotaxiscompetition system with signal-dependent diffusion and sensitivity. J Diff Equ, 2019, 267: 494- 524 |
| 23 | Jin H Y , Wang Z A . Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. European J of Appl Math, 2020, 32 (4): 1- 31 |
| 24 | Jin H Y , Xiang T . Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity, 2016, 29: 3579- 3596 |
| 25 | Ladyzhenskaya O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: Amer Math Soc, 1968 |
| 26 | Liu C . Sequential establishment of stripe patterns in an expanding cell population. Sci, 2011, 334: 238- 241 |
| 27 | Lou Y , Winkler M . Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates. Comm Part Diff Equ, 2015, 40 (10): 1905- 1941 |
| 28 | Mizoguchi N , Souplet P . Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann Inst H Poincar'e Anal Non Lin'eaire, 2014, 31: 851- 875 |
| 29 | Nagai T . Blow-up of radially symmetric solutions to a chemotaxis system. Adv Math Sci Appl, 1995, 5: 581- 601 |
| 30 | Senba T , Yoshida K . Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac, 1997, 40: 411- 433 |
| 31 | Osaki K , Yagi A . Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial Ekvac, 2001, 44: 441- 469 |
| 32 | Porzio M , Vespri V . H$\ddot{\rm o}$lder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J Diff Equ, 1993, 103: 146- 178 |
| 33 | Senba T , Suzuki T . Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl Anal, 2001, 8: 349- 367 |
| 34 | Souplet P, Quittner P. Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Boston: Birkauser, 2007 |
| 35 | Stinner C , Surulescu C , Winkler M . Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J Math Anal, 2014, 46: 1969- 2007 |
| 36 | Tao Y S , Winkler M . Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J Diff Equ, 2012, 252: 692- 715 |
| 37 | Tao Y S , Winkler M . Large time behavior in a multidimensional chemotaxis haptotaxis model with slow signal diffusion. SIAM J Math Anal, 2015, 47: 4229- 4250 |
| 38 | Tao Y S , Winkler M . Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J Eur Math Soc(JEMS), 2017, 19: 3641- 3678 |
| 39 | Tao Y S , Winkler M . Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math Models Meth Appl Sci, 2017, 27 (19): 1645- 1683 |
| 40 | Wang Z A , Hillen T . Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos, 2007, 17: 037108 |
| 41 | Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Diff Equ, 2010, 248: 2889- 2905 |
| 42 | Winkler M . Does a "volume-filling effect" always prevent chemotactic collapse?. Math Methods Appl Sci, 2010, 33: 12- 24 |
| 43 | Winkler M . Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100: 748- 767 |
| 44 | Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Diff Equ, 2010, 248: 2889- 2905 |