| 1 | Bhatt S , Gething P W , Brady O J , et al. The global distribution and burden of dengue. Nature, 2013, 496: 504- 507 | | 2 | Brady O J , Gething P W , Bhatt S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Disease, 2012, 6: e1760 | | 3 | Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51: 102988 | | 4 | Becker N, Petric D, Zgomba M, et al. Mosquitoes and Their Control (Second Edition). New York: Springer-Verlag, 2010 | | 5 | Esteva L , Vargas C . Analysis of a dengue disease transmission model. Math Biosci, 1998, 150: 131- 151 | | 6 | Lou Y , Zhao X-Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Boil, 2011, 62: 543- 568 | | 7 | Wang J L , Chen Y M . Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl Math Lett, 2020, 100: 106052 | | 8 | Wang W , Zhao X-Q . A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J Appl Math, 2011, 71: 147- 168 | | 9 | Wu R , Zhao X-Q . A reaction-diffusion model of vector-borne disease with periodic delays. J Nonlinear Sci, 2019, 29: 29- 64 | | 10 | Ruan S. Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, in: Mathematics for Life Science and Medicine. Berlin: Springer, 2007: 97–122 | | 11 | Berestycki H , Hamel F . Front propagation in periodic excitable media. Commun Pure Appl Math, 2002, 55: 949- 1032 | | 12 | Ducrot A , Magal P , Ruan S . Travelling wave solutions in mltigroup age-structured epidemic models. Arch Rational Mech Anal, 2010, 195: 311- 331 | | 13 | Huang W Z . A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J Differential Equations, 2017, 260: 2190- 2224 | | 14 | 邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102 | | 14 | Deng D , Li Y . Traveling waves in a nonlocal dispersal SIR epidemic model with treatment. Acta Math Sci, 2020, 40A (1): 72- 102 | | 15 | Wang Z-C , Li W-T , Ruan S . Travelling wave fronts in reaction- diffusion systems with spatio-temporal delays. J Differential Equations, 2006, 222: 185- 232 | | 16 | Zhang T . Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J Differential Equations, 2017, 262: 4724- 4770 | | 17 | Zhang T , Wang W , Wang K . Minimal wave speed for a class of non-cooperative diffusion-reaction system. J Differential Equations, 2016, 260: 2763- 2791 | | 18 | Zhao L , Wang Z-C , Ruan S . Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity, 2017, 30: 1287- 1325 | | 19 | 邹霞, 吴事良. 一类具有非线性发生率与时滞的非局部SIR模型的行波解. 数学物理学报, 2018, 38A (3): 496- 513 | | 19 | Zou X , Wu S L . Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence. Acta Math Sci, 2018, 38A (3): 496- 513 | | 20 | Zhao L , Zhang L , Huo H . Traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate. Taiwanese J Math, 2019, 23: 951- 980 | | 21 | Wang W , Zhao X-Q . Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11: 1652- 1673 | | 22 | Zhao X-Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ, 2017, 29: 67- 82 | | 23 | van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29- 48 | | 24 | Hsu C-H , Yang T-S . Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26: 121- 139 | | 25 | Tian B , Yuan R . Traveling waves for a diffusive SEIR epidemic model with non-local reaction. Appl Math Model, 2017, 50: 432- 449 | | 26 | Ma S W . Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differential Equations, 2001, 171: 294- 314 | | 27 | Zeidler E. Nonlinear Functional Analysis and its Applications I. New York: Springer, 1986 | | 28 | Denu D , Ngoma S , Salako R B . Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J Math Anal Appl, 2020, 487: 123995 | | 29 | Wang Z-C , Wu J-H . Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 237- 261 |
|