| 1 | Houyu J , Renhui W . Long time existence of classical solutions for the rotating Euler equations and related models in the optimal Sobolev space. Nonlinearity, 2020, 33 (8): 3763- 3780 | | 2 | Fujita H , Kato T . On the Navier-Stokes initial value problem I. Arch Rational Mech Anal, 1964, 16, 269- 315 | | 3 | Ibrahim S , Yoneda T . Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data. J Math Sci Univ Tokyo, 2013, 20 (1): 1- 25 | | 4 | Hailong Y , Yan J . Long-time behaviors for the Navier-Stokes equations under large initial perturbation. Z Angew Math Phys, 2021, 72 (4): 136 | | 5 | Kato T . Nonstationary flows of viscous and ideal fluids in ${{\Bbb R}} ^{3} $. J Functional Analysis, 1972, 9, 296- 305 | | 6 | Kato T , Ponce G . Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41 (7): 891- 907 | | 7 | Hieber M , Shibata Y . The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework. Math Z, 2010, 265 (2): 481- 491 | | 8 | Xiaochun S , Yong D . Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes-Coriolis system. J Evol Equ, 2020, 20 (2): 335- 354 | | 9 | Jiahong W . The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Differ Equ, 2004, 1 (4): 381- 400 | | 10 | Babin A , Mahalov A , Nicolaenko B . On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math Models Methods Appl Sci, 1999, 9 (7): 1089- 1121 | | 11 | Koh Y , Lee S , Takada R . Strichartz estimates for the Euler equations in the rotating framework. J Differential Equations, 2014, 256 (2): 707- 744 |
|