数学物理学报 ›› 2025, Vol. 45 ›› Issue (3): 790-806.

• • 上一篇    下一篇

随机 Kuramoto-Sivashinsky 方程行波解的非线性稳定

刘羽1(),陈光淦1,*(),李树勇2()   

  1. 1四川师范大学数学科学学院, 可视化计算与虚拟现实四川省重点实验室 成都 610068
    2绵阳师范学院数理学院 四川绵阳 621000
  • 收稿日期:2024-07-22 修回日期:2025-01-26 出版日期:2025-06-26 发布日期:2025-06-20
  • 通讯作者: *陈光淦, E-mail: chenguanggan@hotmail.com
  • 作者简介:刘羽, E-mail: liuyu96@hotmail.com; 李树勇, E-mail: shuyongli@sicnu.edu.cn
  • 基金资助:
    国家自然科学基金(12171343);四川省科技计划(2022JDTD0019)

Nonlinear Stability of Traveling Waves for Stochastic Kuramoto-Sivashinsky Equation

Liu Yu1(),Chen Guanggan1,*(),Li Shuyong2()   

  1. 1School of Mathematical Science and V.C. $\&$ V.R.Key Lab, Sichuan Normal University, Chengdu 610068
    2College of Mathematics and Physics, Mianyang Teachers' College, Sichuan Mianyang 621000
  • Received:2024-07-22 Revised:2025-01-26 Online:2025-06-26 Published:2025-06-20
  • Supported by:
    NSFC(12171343);Sichuan Science and Technology Program(2022JDTD0019)

摘要:

文章主要研究了随机 Kuramoto-Sivashinsky 方程的行波解的非线性稳定性. 利用随机相位变换法和分裂时间变量, 验证了当随机系统的噪声强度足够小并且其初始值足够接近所对应确定系统的行波时, 该随机系统所对应的确定系统的行波解保持非线性稳定性.

关键词: 随机 Kuramoto-Sivashinsky 方程, 行波, 相移, 非线性稳定

Abstract:

This work is concerned with the nonlinear stability of traveling wave for the stochastic Kuramoto-Sivashinsky equation. By stochastic phase shift method and splitting time argument, we prove that the traveling wave solution of the deterministic system retain the nonlinear stability when the noise intensity of the stochastic system is small enough and its initial value is sufficiently close to the traveling wave of the corresponding deterministic system.

Key words: stochastic Kuramoto-Sivashinsky equation, traveling wave, phase shift, nonlinear stability

中图分类号: 

  • O175.2