数学物理学报 ›› 2025, Vol. 45 ›› Issue (3): 972-991.

• • 上一篇    下一篇

在$(p,N)$-策略控制下耐烦服务员不中断多重休假排队系统的性能分析

尹伶玉1,唐应辉1,*(),余玅妙1,魏瑛源2   

  1. 1四川师范大学数学科学学院 成都 610068
    2河西学院数学学院 甘肃张掖 734000
  • 收稿日期:2024-02-01 修回日期:2024-04-29 出版日期:2025-06-26 发布日期:2025-06-20
  • 通讯作者: 唐应辉,Email: tangyh@sicnu.edu.cn
  • 基金资助:
    国家自然科学基金(71571127);四川师范大学学科建设专项项目(XKZX2021-04);教育部人文社会科学研究规划基金(24YJA630121);河西学院校长基金创新团队项目(CXTD2022013)

Performance Analysis of an Queueing System with A Patient Server and Uninterrupted Multiple Vacations Under the Control of ${(p,N)}$-Policy

Yin Lingyu1,Tang Yinghui1,*(),Yu Miaomiao1,Wei Yingyuan2   

  1. 1School of Mathematical Sciences, Sichuan Normal University, Chengdu 610068
    2School of Mathematics, Hexi University, Gansu Zhangye 734000
  • Received:2024-02-01 Revised:2024-04-29 Online:2025-06-26 Published:2025-06-20
  • Supported by:
    NSFC(71571127);Special Project for Subject Construction of Sichuan Normal University(XKZX2021-04);Ministry of Education in China Project of Humanities and Social Sciences(24YJA630121);Hexi University President Fund Innovation Team Project(CXTD2022013)

摘要:

该文提出一个在 $(p,N)$-策略控制下具有耐烦服务员和不中断多重休假的 $M/G/1$ 排队模型, 其中 $(p,N)$-策略是指当服务员休假回来时, 如果系统中等待的顾客数大于等于事先设置的阈值$N(N\geq1)$~时, 则服务员立即开始服务直到系统再次空竭, 若系统中有顾客但顾客数少于$N$~个, 则服务员以概率 $p\left( {0 \le p \le 1} \right)$ 开始服务, 以概率$\left( {1 - p} \right)$~不服务直到系统中的顾客数累积到$N$~个时才服务. 运用全概率分解技术、更新理论和拉普拉斯变换工具, 详细分析了系统的性能指标, 得到了队长瞬态分布的拉普拉斯变换表达式和队长稳态分布的递推表达式, 进一步获得了稳态队长分布的概率母函数和平均队长的表达式. 最后, 通过数值计算实例讨论了系统的容量优化设计, 以及系统的空闲率和附加平均队长对系统参数的敏感性.

关键词: $(p,N)$-策略, 耐烦服务员, 不中断多重休假, 队长分布, 系统容量设计

Abstract:

This paper proposes an $M/G/1$ queueing model with a patient server and uninterrupted multiple vacations under the control of $(p,N)$-policy, in which the $(p,N)$-policy means that when the server returns from vacation and finds the number of customers waiting to be served in the system is greater than or equal a given threshold $N$, the server immediately serves the customers until the system becomes empty again. If there are less than $N$ customers but at least one customer in the system, the server begins its service with probability $p\left( {0 \le p \le 1} \right)$ or stays idle with probability $(1-p)$ until there are $N$ customers in the system and starts its service at once. We employ the total probability decomposition technology, renewal theory and Laplace transform tool to conduct a detailed analysis of the system's performance indicators. The expressions of the Laplace transform of the transient queue length distribution and the recursive expressions of the steady-state queue length distribution are obtained. Furthermore, the probability generating function of the steady-state queue length distribution and the display expression of the average queue length are presented. Finally, numerical examples are presented to discuss the system capacity optimization design and the sensitivity of system parameters on the system's idle rate and the additional average queue-length.

Key words: $(p,N)$-policy, patient server, uninterrupted multiple vacation, queue length distribution, system capacity optimization design

中图分类号: 

  • O226