[1] |
Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41-55
|
[2] |
Rosenbaum P R, Rubin D B. Constructing a control group using multivariate matched sampling models that incorporate the propensity score. Amer Statist, 1985, 39(1): 33-38
|
[3] |
Caron A, Baio G, Manolopoulou I. Estimating individual treatment effects using non-parametric regression models: A review. J Roy Statist Soc Ser A, 2022, 185(3): 1115-1149
|
[4] |
Yao L Y, Chu Z X, Li S, et al. A survey on causal inference. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): 1-46
|
[5] |
Sarraju A, Ward A, Li J, et al. Personalizing cholesterol treatment recommendations for primary cardiovascular disease prevention. Sci Rep, 2022, 12(1): Article 23
|
[6] |
Sorace M. The ties that unbind: Intergovernmental decision rules and the policy-opinion link. J Eur Public Policy, 2023, 30(8): 1609-1632
|
[7] |
Zhang Z W, Liu W, Zhang B, et al. Causal inference with missing exposure information: Methods and applications to an obstetric study. Stat Methods Med Res, 2016, 25(5): 2053-2066
pmid: 24318273
|
[8] |
Abrevaya J, Hsu Y C, Lieli R P. Estimating conditional average treatment effects. J Bus Econom Statist, 2015, 33(4): 485-505
|
[9] |
Li L, Zhou N W, Zhu L X. Outcome regression-based estimation of conditional average treatment effect. Ann Inst Statist Math, 2022, 74(5): 987-1041
|
[10] |
Kudraszow N L, Vieu P. Uniform consistency of kNN regressors for functional variables. Statist Probab Lett, 2013, 83(8): 1863-1870
|
[11] |
Ling N X, Meng S Y, Vieu P. Uniform consistency rate of kNN regression estimation for functional time series data. J Nonparametr Stat, 2019, 31(2): 451-468
|
[12] |
Friedman J H. Greedy function approximation: A gradient boosting machine. Ann Statist, 2001, 29: 1189-1232
|
[13] |
Chen T Q, Guestrin C. Xgboost: A scalable tree boosting system//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 785-794
|
[14] |
Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32
|
[15] |
Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Amer Statist Assoc, 2018, 113(523): 1228-1242
|
[16] |
Athey S, Wager S. Estimating treatment effects with causal forests: An application. Observ Stud, 2019, 5(2): 37-51
|
[17] |
Little R J, D'agostino R, Cohen M L, et al. The prevention and treatment of missing data in clinical trials. New Engl J Med, 2012, 367(14): 1355-1360
|
[18] |
Ocampo A, Schmidli H, Quarg P, et al. Identifying treatment effects using trimmed means when data are missing not at random. Pharm Stat, 2021, 20(6): 1265-1277
doi: 10.1002/pst.2147
pmid: 34169641
|
[19] |
Kuzmanovic M, Hatt T, Feuerriegel S. Estimating conditional average treatment effects with missing treatment information//Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia: PMLR, 2023, 746-766
|
[20] |
Stensrud M J, Robins J M, Sarvet A, et al. Conditional separable effects. J Amer Statist Assoc, 2023, 118(544): 2671-2683
|
[21] |
Zhao A Q, Peng D. To adjust or not to adjust? Estimating the average treatment effect in randomized experiments with missing covariates. J Amer Statist Assoc, 2024, 119(545): 450-460
|
[22] |
苗旺, 刘春辰, 耿直. 因果推断的统计方法. 中国科学: 数学, 2018, 48(12): 1753-1778
|
|
Miao W, Liu C C, Geng Z. Statistical approaches for causal inference (in Chinese). Sci Sin Math, 2018, 48(12): 1753-1778 (in Chinese).
|
[23] |
Greenland S, Pearl J, Robins J M. Confounding and collapsibility in causal inference. Statist Sci, 1999, 14(1): 29-46
|
[24] |
Geng Z, Guo J H, Fung W K. Criteria for confounders in epidemiological studies. J R Stat Soc Ser B Stat Methodol, 2002, 64(1): 3-15
|
[25] |
Han P S. Multiply robust estimation in regression analysis with missing data. J Amer Statist Assoc, 2014, 109(507): 1159-1173
|
[26] |
Ferraty F, Laksaci A, Tadj A, et al. Rate of uniform consistency for nonparametric estimates with functional variables. J Statist Plann Inference, 2010, 140(2): 335-352
|
[27] |
Hill J L. Bayesian nonparametric modeling for causal inference. J Comput Graph Statist, 2011, 20(1): 217-240
|
[28] |
Burba F, Ferraty F, Vieu P. $k$-Nearest neighbour method in functional nonparametric regression. J Nonparametr Stat, 2009, 21(4): 453-469
|
[29] |
Ezzahrioui M, Ould-Saïd E. Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. J Nonparametr Stat, 2008, 20(1): 3-18
|
[30] |
黄绍航. 随机缺失下条件平均处理效果的 $k$ 近邻核估计. 杭州: 浙江工商大学, 2022
|
|
Huang S H. $K$-nearest Neighbor Kernel Estimation of Conditional Average Treatment Effect Under Random Missing Data. Hangzhou: Zhejiang Gongshang University, 2022
|