| [1] | Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41-55 | | [2] | Rosenbaum P R, Rubin D B. Constructing a control group using multivariate matched sampling models that incorporate the propensity score. Amer Statist, 1985, 39(1): 33-38 | | [3] | Caron A, Baio G, Manolopoulou I. Estimating individual treatment effects using non-parametric regression models: A review. J Roy Statist Soc Ser A, 2022, 185(3): 1115-1149 | | [4] | Yao L Y, Chu Z X, Li S, et al. A survey on causal inference. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): 1-46 | | [5] | Sarraju A, Ward A, Li J, et al. Personalizing cholesterol treatment recommendations for primary cardiovascular disease prevention. Sci Rep, 2022, 12(1): Article 23 | | [6] | Sorace M. The ties that unbind: Intergovernmental decision rules and the policy-opinion link. J Eur Public Policy, 2023, 30(8): 1609-1632 | | [7] | Zhang Z W, Liu W, Zhang B, et al. Causal inference with missing exposure information: Methods and applications to an obstetric study. Stat Methods Med Res, 2016, 25(5): 2053-2066 | | [8] | Abrevaya J, Hsu Y C, Lieli R P. Estimating conditional average treatment effects. J Bus Econom Statist, 2015, 33(4): 485-505 | | [9] | Li L, Zhou N W, Zhu L X. Outcome regression-based estimation of conditional average treatment effect. Ann Inst Statist Math, 2022, 74(5): 987-1041 | | [10] | Kudraszow N L, Vieu P. Uniform consistency of kNN regressors for functional variables. Statist Probab Lett, 2013, 83(8): 1863-1870 | | [11] | Ling N X, Meng S Y, Vieu P. Uniform consistency rate of kNN regression estimation for functional time series data. J Nonparametr Stat, 2019, 31(2): 451-468 | | [12] | Friedman J H. Greedy function approximation: A gradient boosting machine. Ann Statist, 2001, 29: 1189-1232 | | [13] | Chen T Q, Guestrin C. Xgboost: A scalable tree boosting system//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 785-794 | | [14] | Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32 | | [15] | Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Amer Statist Assoc, 2018, 113(523): 1228-1242 | | [16] | Athey S, Wager S. Estimating treatment effects with causal forests: An application. Observ Stud, 2019, 5(2): 37-51 | | [17] | Little R J, D'agostino R, Cohen M L, et al. The prevention and treatment of missing data in clinical trials. New Engl J Med, 2012, 367(14): 1355-1360 | | [18] | Ocampo A, Schmidli H, Quarg P, et al. Identifying treatment effects using trimmed means when data are missing not at random. Pharm Stat, 2021, 20(6): 1265-1277 | | [19] | Kuzmanovic M, Hatt T, Feuerriegel S. Estimating conditional average treatment effects with missing treatment information//Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia: PMLR, 2023, 746-766 | | [20] | Stensrud M J, Robins J M, Sarvet A, et al. Conditional separable effects. J Amer Statist Assoc, 2023, 118(544): 2671-2683 | | [21] | Zhao A Q, Peng D. To adjust or not to adjust? Estimating the average treatment effect in randomized experiments with missing covariates. J Amer Statist Assoc, 2024, 119(545): 450-460 | | [22] | 苗旺, 刘春辰, 耿直. 因果推断的统计方法. 中国科学: 数学, 2018, 48(12): 1753-1778 | | [22] | Miao W, Liu C C, Geng Z. Statistical approaches for causal inference (in Chinese). Sci Sin Math, 2018, 48(12): 1753-1778 (in Chinese). | | [23] | Greenland S, Pearl J, Robins J M. Confounding and collapsibility in causal inference. Statist Sci, 1999, 14(1): 29-46 | | [24] | Geng Z, Guo J H, Fung W K. Criteria for confounders in epidemiological studies. J R Stat Soc Ser B Stat Methodol, 2002, 64(1): 3-15 | | [25] | Han P S. Multiply robust estimation in regression analysis with missing data. J Amer Statist Assoc, 2014, 109(507): 1159-1173 | | [26] | Ferraty F, Laksaci A, Tadj A, et al. Rate of uniform consistency for nonparametric estimates with functional variables. J Statist Plann Inference, 2010, 140(2): 335-352 | | [27] | Hill J L. Bayesian nonparametric modeling for causal inference. J Comput Graph Statist, 2011, 20(1): 217-240 | | [28] | Burba F, Ferraty F, Vieu P. $k$-Nearest neighbour method in functional nonparametric regression. J Nonparametr Stat, 2009, 21(4): 453-469 | | [29] | Ezzahrioui M, Ould-Sa?d E. Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. J Nonparametr Stat, 2008, 20(1): 3-18 | | [30] | 黄绍航. 随机缺失下条件平均处理效果的 $k$ 近邻核估计. 杭州: 浙江工商大学, 2022 | | [30] | Huang S H. $K$-nearest Neighbor Kernel Estimation of Conditional Average Treatment Effect Under Random Missing Data. Hangzhou: Zhejiang Gongshang University, 2022 |
|