| [1] | Evans L C. Partial Differential Equations Providence, RI: American Mathematical Society, 2022 | | [2] | 叶其孝. 反应扩散方程引论. 北京: 科学出版社, 2019 | | [2] | Ye Q X. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 2019 | | [3] | Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer Science and Business Media, 1996 | | [4] | Chate H, Courbage M. Lattice systems. Physica D: Nonlinear Phenomena, 1997, 1.3: 1-612 | | [5] | Keener J P. Propagation and its failure in coupled systems of discrete excitable cells. Journal of Mathematical Chemistry, 1987, 47: 556-572 | | [6] | Winslow R L, Kimball A L, Varghese A, et al. Simulating cardiac sinus and atrial network dynamics on the connection machine. Physica D: Nonlinear Phenomena, 1993, 64: 281-298 | | [7] | Erneux T, Nicolis G. Propagating waves in discrete bistable reaction-diffusion systems. Physica D: Nonlinear Phenomena, 1993, 67: 237-244 | | [8] | Kapral R. Discrete models for chemically reacting systems. Journal of Mathematical Chemistry, 1991, 6: 113-163 | | [9] | Pecora L M, Carroll T L. Synchronization in chaotic systems. Physical Review Letters, 1990, 64: 821 | | [10] | Fabiny L, Colet P, Roy R, et al. Coherence and phase dynamics of spatially coupled solid-state lasers. Physical Review A, 1993, 47: 4287-4298 | | [11] | Hillert M. A solid-solution model for inhomogeneous systems. Acta Metallurgica, 1961, 9: 525-535 | | [12] | Chow S N, Paret J M, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations Random Comput. Random and Computational Dynamics, 1996, 4: 109-178 | | [13] | Abdallah A. Uniform exponential attractor for first order non-autonomous lattice dynamical systems. Journal of Differential Equations, 2011, 2.1: 1489-1504 | | [14] | Bates P, Lu K, Wang B. Attractors of non-autonomous stochastic lattice systems in weighted spaces. Physica D: Nonlinear Phenomena, 2014, 2.9: 32-50 | | [15] | Caraballo T, Morillas F, Valero J. Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity. Journal of Differential Equations, 2012, 2.3: 667-693 | | [16] | Caraballo T, Morillas F, Valero J. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34: 51-77 | | [17] | Wang X, Lu K, Wang B. Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise. Journal of Dynamics and Differential Equations, 2016, 28: 1309-1355 | | [18] | Zhou S. Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. Journal of Differential Equations, 2017, 2.3: 2247-2279 | | [19] | Chekroun M, Glatt-Holtz N. Invariant measures for dissipative dynamical systems: abstract results and applications. Communications in Mathematical Physics, 2012, 3.6(3): 723-761 | | [20] | ?ukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34: 4211-4222 | | [21] | Li X, Shen W, Sun C. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete and Continuous Dynamical Systems-B, 2017, 22(6): 2427-2446 | | [22] | Moussa G, Cláudia B. Invariant measures for multivalued semigroups. Journal of Mathematical Analysis and Applications, 2017, 4.5(2): 1234-1248 | | [23] | 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与 Liouville 型方程. 数学物理学报, 2020, 40A(2): 328-339 | | [23] | Li Y J, Sang Y M, Zhao C D. Invariant measures and Liouville type theorem for first-order lattice systems. Acta Math Sci, 2020, 40A(2): 328-339 | | [24] | Zhao C, Wang J, Caraballo T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. Journal of Differential Equations, 2022, 3.7: 474-494 | | [25] | 邹天芳, 赵才地. 加权空间中一阶格点系统的统计解及其 Kolmogorov 熵. 数学物理学报, 2023, 43A(5): 1559-1574 | | [25] | Zhou T F, Zhao C D. Statistical solutions and Kolmogorov entropy for first-order lattice systems in weighted spaces. Acta Math Sci, 2023, 43A(5): 1559-1574 | | [26] | Zhao C, Zhuang R. Statistical solutions and Liouville theorem for the second order lattice systems with varying coefficients. Journal of Differential Equations, 2023, 3.2: 194-234 | | [27] | 赵才地, 李艳娇, 阳玲, 等. Ladyzhenskaya 流体力学方程组的拉回吸引子与不变测度. 数学学报, 2018, 61: 1-12 | | [27] | Zhao C D, Li Y J, Yang L, et al. Pullback attractors and invariant measures for Ladyzhenskaya model. Acta Mathematica Sinica, 2018, 61: 823-834 | | [28] | 杨虎军, 韩晓玲, 赵才地. 三维热带气候模型轨道统计解的存在性, 退化正则性与极限行为. 数学学报, 2025, 68(2): 325-349 | | [28] | Yang H J, Han X L, Zhao C D. Existence, degenerate regularity and limit behavior of trajectory statistical solution for the 3D tropical climate model. Acta Mathematica Sinica, 2025, 68(2): 325-349 | | [29] | Boyer F, Fabrie P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York: Springer, 2013 | | [30] | Zhao C. Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains. Mathematische Annalen, 2025, 3.1: 1711-1730 | | [31] | Carvalho A, Langa J A, Robinson J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. New York: Springer, 2013 | | [32] | Caraballo T, Morillas F, Valero J. Attractors for non-autonomous retarded lattice dynamical systems. Nonautonomous Dynamical Systems, 2015, 2: 31-51 | | [33] | Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 | | [34] | Yang H, Han X, Zhao C. Pullback dynamics and statistical solutions for dissipative non-autonomous Zakharov equations. Journal of Differential Equations, 2024, 3.0: 1-57 |
|