数学物理学报 ›› 2025, Vol. 45 ›› Issue (4): 1311-1326.
收稿日期:
2024-09-05
修回日期:
2025-04-13
出版日期:
2025-08-26
发布日期:
2025-08-01
通讯作者:
*E-mail: 基金资助:
Received:
2024-09-05
Revised:
2025-04-13
Online:
2025-08-26
Published:
2025-08-01
Supported by:
摘要:
该文提出求解广义互补问题的 Levenberg-Marquardt 型方法. 首先, 结合一类互补函数, 将广义互补问题等价重构为非线性方程组, 进而提出一类带有线搜索的自适应修正 Levenberg-Marquardt 算法对其进行求解. 其次, 在适当的条件下分析了算法的收敛性. 最后, 通过数值实验验证了所提出算法的可行性和有效性.
中图分类号:
于冬梅, 刘大熠. 求解广义互补问题的 Levenberg-Marquardt 算法[J]. 数学物理学报, 2025, 45(4): 1311-1326.
Yu Dongmei, Liu Dayi. The Levenberg-Marquardt Algorithm for Solving the Generalized Complementarity Problems[J]. Acta mathematica scientia,Series A, 2025, 45(4): 1311-1326.
[1] | Kanzow C, Fukushima M. Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J Optim Theory Appl, 1996, 90: 581-603 |
[2] | Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Linear Algebra Appl, 2010, 17(6): 917-933 |
[3] | Noor M A. On the nonlinear complementarity problem. J Math Anal Appl, 1987, 1.3(2): 455-460 |
[4] | Pang J S. On the convergence of a basic iterative method for the implicit complementarity problem. J Optim Theory Appl, 1982, 37: 149-162 |
[5] | Fischer A. A special Newton-type optimization method. Optimization, 1992, 24( 3/4): 269-284 |
[6] | 迟晓妮, 曾荣, 刘三阳, 等. 对称锥权互补问题的正则化非单调非精确光滑牛顿法. 数学物理学报, 2021, 41A(2): 507-522 |
Chi X N, Zeng R, Liu S Y, et al. A regularized nonmonotone inexact smoothing Newton algorithm for weighted symmetric cone complementarity problems. Acta Math Sci, 2021, 41A(2): 507-522 | |
[7] | 张运胜, 高雷阜. 对称锥互补问题的一种非精确光滑牛顿算法. 数学物理学报, 2015, 35A(4): 824-832 |
Zhang Y S, Gao L F. A smoothing inexact Newton method for symmetric cone complementarity problems. Acta Math Sci, 2015, 35A(4): 824-832 | |
[8] | Mittal G, Giri A K. Convergence rates for iteratively regularized Gauss-Newton method subject to stability constraints. J Comput Appl Math, 2022, 4.0: 113744 |
[9] | Tang J Y, Zhou J C. A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems. Optim Methods Softw, 2022, 37(3): 1145-1164 |
[10] | Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math Program, 1997, 76: 493-512 |
[11] |
刘志敏, 杜守强, 王瑞莹. 求解线性互补问题的 Levenberg-Marquardt 型算法. 应用数学学报, 2018, 41(3): 403-419
doi: 10.12387/C2018031 |
Liu Z M, Du S Q, Wang R Y. Levenberg-Marquardt type method for solving linear complementarity problems. Acta Math Appl Sin, 2018, 41(3): 403-419
doi: 10.12387/C2018031 |
|
[12] |
胡雅伶, 彭拯, 章旭, 等. 一种求解非线性互补问题的多步自适应 Levenberg-Marquardt 算法. 计算数学, 2021, 43(3): 322-336
doi: 10.12286/jssx.j2019-0615 |
Hu Y L, Peng Z, Zhang X, et al. An adaptive multi-step Levenberg-Marquardt method for nonlinear complementarity problem. Math Numer Sin, 2021, 43(3): 322-336
doi: 10.12286/jssx.j2019-0615 |
|
[13] | Lera G, Pinzolas M. Neighborhood based Levenberg-Marquardt algorithm for neural network training. IEEE Trans Neural Netw, 2002, 13(5): 1200-1203 |
[14] | Chen L, Ma Y F. A modified Levenberg-Marquardt method for solving system of nonlinear equations. J Appl Math Comput, 2023, 69: 2019-2040 |
[15] |
晋慧慧, 袁柳洋, 万仲平. 一种新的非单调修正 Levenberg-Marquardt 算法. 应用数学学报, 2024, 47(5): 799-810
doi: 10.20142/j.cnki.amas.202401016 |
Jin H H, Yuan L Y, Wan Z P. A new nonmonotone modified Levenberg-Marquardt algorithm. Acta Math Appl Sin, 2024, 47(5): 799-810
doi: 10.20142/j.cnki.amas.202401016 |
|
[16] | Du S Q. Generalized Newton method for a kind of complementarity problem. Abstr Appl Anal, 2014, 20.4(1): 745981 |
[17] | Vivas H, Pérez R, Arias C A. A nonsmooth Newton method for solving the generalized complementarity problem. Numer Algorithms, 2024, 95: 551-574 |
[18] | Fan J Y, Yuan Y X. On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption. Computing, 2005, 74: 23-39 |
[19] | Ma C F, Jiang L H. Some research on Levenberg-Marquardt method for the nonlinear equations. Appl Math Comput, 2007, 1.4(2): 1032-1040 |
[20] | Fan J Y, Pan J Y. A note on the Levenberg-Marquardt parameter. Appl Math Comput, 2009, 2.7(2): 351-359 |
[21] | Amini K, Rostami F, Caristi G. An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations. Optimization, 2018, 67(5): 637-650 |
[22] | Huang B H, Ma C F. A Shamanskii-like self-adaptive Levenberg-Marquardt method for nonlinear equations. Comput Math Appl, 2019, 77(2): 357-373 |
[23] | Tang J Y, Zhou J C. Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Comput Optim Appl, 2021, 80: 213-244 |
[24] | Liu X J, Liu S Y. A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone. Appl Math, 2022, 67: 49-64 |
[25] | Lopes V L R, Martínez J M, Pérez R. On the local convergence of quasi-Newton methods for nonlinear complementarity problems. Appl Numer Math, 1999, 30(1): 3-22 |
[26] | Yang Y F, Qi L Q. Smoothing trust region methods for nonlinear complementarity problems with $P_{0}$-functions. Ann Oper Res, 2005, 1.3: 99-117 |
[27] | Jana R, Dutta A, Das A K. More on hidden $Z$-matrices and linear complementarity problem. Linear Multilinear Algebra, 2021, 69(6): 1151-1160 |
[28] | Facchinei F, Soares J. A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J Optim, 1997, 7(1): 225-247 |
[29] | Yamashita N, Fukushima M. On the rate of convergence of the Levenberg-Marquardt method. Computing, 2001, 15: 239-249 |
[30] | Behling R, Iusem A. The effect of calmness on the solution set of systems of nonlinear equations. Math Program, 2013, 1.7: 155-165 |
[31] | Stewart G W, Sun J G. Matrix Perturbation Theory. Boston: Academic Press, 1990 |
[32] | Outrata J V, Zowe J. A Newton method for a class of quasi-variational inequalities. Comput Optim Appl, 1995, 4: 5-21 |
[33] | Wu S L, Guo P. Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl Numer Math, 2018, 1.2: 127-137 |
[1] | 马昌凤, 谢亚君, 卜凡. 求解Stein张量方程的张量格式BCGSTAB算法[J]. 数学物理学报, 2024, 44(6): 1652-1664. |
[2] | 蔡宇, 周光辉. 一种 WYL 型谱共轭梯度法的全局收敛性[J]. 数学物理学报, 2024, 44(1): 173-184. |
[3] | 于一康,牛晶. 一类椭圆型界面问题的数值算法[J]. 数学物理学报, 2023, 43(3): 883-895. |
[4] | 刘鹏杰, 吴彦强, 邵枫, 张艳, 邵虎. 两个带重启方向的改进 HS 型共轭梯度法[J]. 数学物理学报, 2023, 43(2): 570-580. |
[5] | 张宁,刘金魁. 非线性伪单调方程组的谱LS型投影算法[J]. 数学物理学报, 2022, 42(6): 1886-1897. |
[6] | 江羡珍,廖伟,简金宝,毋晓迪. 一个带重启步的改进PRP型谱共轭梯度法[J]. 数学物理学报, 2022, 42(1): 216-227. |
[7] | 马国栋. 强Wolfe线搜索下的修正PRP和HS共轭梯度法[J]. 数学物理学报, 2021, 41(3): 837-847. |
[8] | 迟晓妮,曾荣,刘三阳,朱志斌. 对称锥权互补问题的正则化非单调非精确光滑牛顿法[J]. 数学物理学报, 2021, 41(2): 507-522. |
[9] | 葛志昊,李瑞华. Bogoliubov-Tolmachev-Shirkov模型临界温度和能隙解的数值方法[J]. 数学物理学报, 2020, 40(6): 1699-1711. |
[10] | 李向利,师娟娟,董晓亮. 一类修正的非单调谱共轭梯度法及其在非负矩阵分解中的应用[J]. 数学物理学报, 2018, 38(5): 954-962. |
[11] | 倪铁, 刘晓红. 基于尺度中心路径的求解SCLP的非单调光滑牛顿算法[J]. 数学物理学报, 2014, 34(2): 378-392. |
[12] | 胡朝明, 万中, 王旭. 一种新的非单调谱共轭梯度算法[J]. 数学物理学报, 2013, 33(1): 78-88. |
[13] | 孙清滢, 董杰红, 桑兆阳. 基于简单二次函数模型的带线搜索的新信赖域算法[J]. 数学物理学报, 2010, 30(6): 1562-1574. |
|