| [1] | Kanzow C, Fukushima M. Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J Optim Theory Appl, 1996, 90: 581-603 | | [2] | Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Linear Algebra Appl, 2010, 17(6): 917-933 | | [3] | Noor M A. On the nonlinear complementarity problem. J Math Anal Appl, 1987, 1.3(2): 455-460 | | [4] | Pang J S. On the convergence of a basic iterative method for the implicit complementarity problem. J Optim Theory Appl, 1982, 37: 149-162 | | [5] | Fischer A. A special Newton-type optimization method. Optimization, 1992, 24( 3/4): 269-284 | | [6] | 迟晓妮, 曾荣, 刘三阳, 等. 对称锥权互补问题的正则化非单调非精确光滑牛顿法. 数学物理学报, 2021, 41A(2): 507-522 | | [6] | Chi X N, Zeng R, Liu S Y, et al. A regularized nonmonotone inexact smoothing Newton algorithm for weighted symmetric cone complementarity problems. Acta Math Sci, 2021, 41A(2): 507-522 | | [7] | 张运胜, 高雷阜. 对称锥互补问题的一种非精确光滑牛顿算法. 数学物理学报, 2015, 35A(4): 824-832 | | [7] | Zhang Y S, Gao L F. A smoothing inexact Newton method for symmetric cone complementarity problems. Acta Math Sci, 2015, 35A(4): 824-832 | | [8] | Mittal G, Giri A K. Convergence rates for iteratively regularized Gauss-Newton method subject to stability constraints. J Comput Appl Math, 2022, 4.0: 113744 | | [9] | Tang J Y, Zhou J C. A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems. Optim Methods Softw, 2022, 37(3): 1145-1164 | | [10] | Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math Program, 1997, 76: 493-512 | | [11] | 刘志敏, 杜守强, 王瑞莹. 求解线性互补问题的 Levenberg-Marquardt 型算法. 应用数学学报, 2018, 41(3): 403-419 | | [11] | Liu Z M, Du S Q, Wang R Y. Levenberg-Marquardt type method for solving linear complementarity problems. Acta Math Appl Sin, 2018, 41(3): 403-419 | | [12] | 胡雅伶, 彭拯, 章旭, 等. 一种求解非线性互补问题的多步自适应 Levenberg-Marquardt 算法. 计算数学, 2021, 43(3): 322-336 | | [12] | Hu Y L, Peng Z, Zhang X, et al. An adaptive multi-step Levenberg-Marquardt method for nonlinear complementarity problem. Math Numer Sin, 2021, 43(3): 322-336 | | [13] | Lera G, Pinzolas M. Neighborhood based Levenberg-Marquardt algorithm for neural network training. IEEE Trans Neural Netw, 2002, 13(5): 1200-1203 | | [14] | Chen L, Ma Y F. A modified Levenberg-Marquardt method for solving system of nonlinear equations. J Appl Math Comput, 2023, 69: 2019-2040 | | [15] | 晋慧慧, 袁柳洋, 万仲平. 一种新的非单调修正 Levenberg-Marquardt 算法. 应用数学学报, 2024, 47(5): 799-810 | | [15] | Jin H H, Yuan L Y, Wan Z P. A new nonmonotone modified Levenberg-Marquardt algorithm. Acta Math Appl Sin, 2024, 47(5): 799-810 | | [16] | Du S Q. Generalized Newton method for a kind of complementarity problem. Abstr Appl Anal, 2014, 20.4(1): 745981 | | [17] | Vivas H, Pérez R, Arias C A. A nonsmooth Newton method for solving the generalized complementarity problem. Numer Algorithms, 2024, 95: 551-574 | | [18] | Fan J Y, Yuan Y X. On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption. Computing, 2005, 74: 23-39 | | [19] | Ma C F, Jiang L H. Some research on Levenberg-Marquardt method for the nonlinear equations. Appl Math Comput, 2007, 1.4(2): 1032-1040 | | [20] | Fan J Y, Pan J Y. A note on the Levenberg-Marquardt parameter. Appl Math Comput, 2009, 2.7(2): 351-359 | | [21] | Amini K, Rostami F, Caristi G. An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations. Optimization, 2018, 67(5): 637-650 | | [22] | Huang B H, Ma C F. A Shamanskii-like self-adaptive Levenberg-Marquardt method for nonlinear equations. Comput Math Appl, 2019, 77(2): 357-373 | | [23] | Tang J Y, Zhou J C. Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Comput Optim Appl, 2021, 80: 213-244 | | [24] | Liu X J, Liu S Y. A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone. Appl Math, 2022, 67: 49-64 | | [25] | Lopes V L R, Martínez J M, Pérez R. On the local convergence of quasi-Newton methods for nonlinear complementarity problems. Appl Numer Math, 1999, 30(1): 3-22 | | [26] | Yang Y F, Qi L Q. Smoothing trust region methods for nonlinear complementarity problems with $P_{0}$-functions. Ann Oper Res, 2005, 1.3: 99-117 | | [27] | Jana R, Dutta A, Das A K. More on hidden $Z$-matrices and linear complementarity problem. Linear Multilinear Algebra, 2021, 69(6): 1151-1160 | | [28] | Facchinei F, Soares J. A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J Optim, 1997, 7(1): 225-247 | | [29] | Yamashita N, Fukushima M. On the rate of convergence of the Levenberg-Marquardt method. Computing, 2001, 15: 239-249 | | [30] | Behling R, Iusem A. The effect of calmness on the solution set of systems of nonlinear equations. Math Program, 2013, 1.7: 155-165 | | [31] | Stewart G W, Sun J G. Matrix Perturbation Theory. Boston: Academic Press, 1990 | | [32] | Outrata J V, Zowe J. A Newton method for a class of quasi-variational inequalities. Comput Optim Appl, 1995, 4: 5-21 | | [33] | Wu S L, Guo P. Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl Numer Math, 2018, 1.2: 127-137 |
|