[1] |
Rohn J. A theorem of the alternatives for the equation $Ax+B|x|=b$. Linear Multilinear Algebra, 2004, 52(6): 421-426
|
[2] |
Hu S L, Huang Z H. A note on absolute value equations. Optim Lett, 2010, 4(3): 417-424
|
[3] |
Ketabchi S, Moosaei H. An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput Math Appl, 2012, 64(6): 1882-1885
|
[4] |
Mangasarian O L. A hybrid algorithm for solving the absolute value equation. Optim Lett, 2015, 9(7): 1469-1474
|
[5] |
Wu S L, Guo P. Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl Numer Math, 2018, 1.2: 127-137
|
[6] |
Ren H, Wang X, Tang X B, Wang T. The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. Computers & Mathematics with Applications, 2019, 77(4): 1071-1081
|
[7] |
Khan A, Iqbal J, Akgül A, et al. A Newton-type technique for solving absolute value equations. Alex Engin Jour, 2022, 64: 291-296
|
[8] |
Golub G, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. J Soc Indust Appl Math B Numer Anal, 1965, 2(2): 205-224
|
[9] |
Wang A, Cao Y, Chen J X. Modified Newton-type iteration methods for generalized absolute value equations. J Optim Theory Appl, 2019, 1.1(1): 216-230
|
[10] |
Rohn J, Hooshyarbakhsh V, Farhadsefat R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim Lett, 2014, 8: 35-44
|
[11] |
Zhou H Y, Wu S L, Li C X. Newton-based matrix splitting method for generalized absolute value equation. J Comput Appl Math, 2021, 3.4: 113578
|
[12] |
Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Linear Alge Appl, 2010, 17: 917-933
|