| [1] | Rohn J. A theorem of the alternatives for the equation $Ax+B|x|=b$. Linear Multilinear Algebra, 2004, 52(6): 421-426 | | [2] | Hu S L, Huang Z H. A note on absolute value equations. Optim Lett, 2010, 4(3): 417-424 | | [3] | Ketabchi S, Moosaei H. An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput Math Appl, 2012, 64(6): 1882-1885 | | [4] | Mangasarian O L. A hybrid algorithm for solving the absolute value equation. Optim Lett, 2015, 9(7): 1469-1474 | | [5] | Wu S L, Guo P. Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl Numer Math, 2018, 1.2: 127-137 | | [6] | Ren H, Wang X, Tang X B, Wang T. The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. Computers & Mathematics with Applications, 2019, 77(4): 1071-1081 | | [7] | Khan A, Iqbal J, Akgül A, et al. A Newton-type technique for solving absolute value equations. Alex Engin Jour, 2022, 64: 291-296 | | [8] | Golub G, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. J Soc Indust Appl Math B Numer Anal, 1965, 2(2): 205-224 | | [9] | Wang A, Cao Y, Chen J X. Modified Newton-type iteration methods for generalized absolute value equations. J Optim Theory Appl, 2019, 1.1(1): 216-230 | | [10] | Rohn J, Hooshyarbakhsh V, Farhadsefat R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim Lett, 2014, 8: 35-44 | | [11] | Zhou H Y, Wu S L, Li C X. Newton-based matrix splitting method for generalized absolute value equation. J Comput Appl Math, 2021, 3.4: 113578 | | [12] | Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Linear Alge Appl, 2010, 17: 917-933 |
|