数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1553-1564.

• • 上一篇    下一篇

球面上具有凹凸非线性项的 $p$-Dirac 方程的多解性

张惠1(),杨旭1,2,*()   

  1. 1云南师范大学数学学院 昆明 650500
    2云南省现代分析数学及其应用重点实验室 昆明 650500
  • 收稿日期:2024-12-07 修回日期:2025-01-27 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 杨旭,E-mail: yangxu@ynnu.edu.cn
  • 作者简介:张惠, E-mail: 1790018106@qq.com
  • 基金资助:
    国家自然科学基金(11801499)

Multiplicity of Solutions for the $p$-Dirac Equation with Concave-Convex on a Sphere

Hui Zhang1(),Xu Yang1,2,*()   

  1. 1School of Mathematics, Yunnan Normal University, Kunming 650500
    2Yunnan Key Laboratory of Modern Analytical Mathematics and Applications, Kunming 650500
  • Received:2024-12-07 Revised:2025-01-27 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSFC(11801499)

摘要:

$D$ 是 Dirac 算子, $u:S^{N}\rightarrow \Sigma S^{N}$ 是一个旋量. 该文研究了具有凹凸非线性项的 $p$-Dirac 方程

$\begin{equation*}\label{eq0.1} D_{p} u =\xi |u|^{q-2}u+\eta |u|^{p^*-2}u \end{equation*}$

的多解性, 其中 $D_{p} u=:D({|Du|}^{p-2}Du)$, $1. 首先, 因为该方程含有临界增长的非线性项, 使得 Sobolev 嵌入 $W^{1, p}(S^{N}, \Sigma S^{N}) \hookrightarrow L^{p^*}(S^{N}, \Sigma S^{N})$ 失去紧性, 所以该文利用球面 $S^{N}$ 上一个等距子群的作用, 适当缩小所考虑的函数空间, 使得 Sobolev 嵌入重新获得紧性; 然后利用双正交系理论对函数空间进行分解, 结合变形的喷泉定理证明该方程存在一列小能量弱解和一列大能量弱解; 最后, 给出了该方程在一定条件下, 不存在正能量弱解和负能量弱解

关键词: $p$-Dirac 方程, 喷泉定理变形, 群作用

Abstract:

Let $D$ be the Dirac operator and $u:S^{N} \rightarrow \Sigma S^{N} $ be a spinor. This article investigates the multiplicity of solutions for $p$-Dirac equations with concave convex nonlinear terms

$\begin{equation*}\label{eq3.26} D_{p} u =\xi |u|^{q-2}u+\eta |u|^{p^*-2}u, \end{equation*}$

where $D_{p} u=:D({|Du|}^{p-2}Du)$, $1. Firstly, the Sobolev embedding $W^{1, p}(S^{N}, \Sigma S^{N}) \hookrightarrow L^{p^*}(S^{N}, \Sigma S^{N})$ loses its compactness because the equation contains a nonlinear term with critical growth. Therefore, in this paper, we utilize the action of an isometry subgroup on the sphere $S^{N} $ to appropriately reduce the function space under consideration, enabling the $Sobolev$ embedding to regain its compactness; Then, using the theory of orthogonal systems, the function space is decomposed, and combined with the Variant Fountain theorem, it is proved that the equation have a series of low-energy weak solutions and a series of high-energy weak solutions; Finally, it is stated that under certain conditions, there are no weak solutions with positive or negative energy for the equation.

Key words: $p$-Dirac equation, variant fountain theorem, group action

中图分类号: 

  • O176.3