| [1] | Bingham D, Sitter R R, Tang B X. Orthogonal and nearly orthogonal designs for computer experiments. Biometrika, 2009, 96(1): 51-65 | | [2] | Lin C D, Mukerjee R, Tang B X. Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika, 2009, 96(1): 243-247 | | [3] | Wang Y P, Yang J F, Xu H Q. On the connection between maximin distance designs and orthogonal designs. Biometrika, 2018, 105(2): 471-477 | | [4] | 覃红, 欧祖军, Chatterjee K. 四水平计算机试验设计的构造. 中国科学: 数学, 2017, 47(9): 1089-1100 | | [4] | Qin H, Ou Z J, Chatterjee K. Construction of four-level designs for computer experiments (in Chinese). S Sin Math, 2017, 47(9): 1089-1100 (in Chinese). | | [5] | Chatterjee K, Ou Z J, Phoa F K H, et al. Uniform four-level designs from two-level designs: a new look. Statist Sinica, 2017, 27: 171-186 | | [6] | Hu L P, Li H Y, Ou Z J. Constructing optimal four-level designs via Gray map code. Metrika, 2019, 82: 573-587 | | [7] | 王春燕, 杨金语. 正交空间填充设计的最新结果. 中国科学: 数学, 2024, 54(1): 87-104 | | [7] | Wang C Y, Yang J Y. New construction results for space-filling orthogonal designs (in Chinese). S Sin Math, 2024, 54(1): 87-104 (in Chinese). | | [8] | Liu H Y, Liu M Q. Column-orthogonal strong orthogonal arrays and sliced strong orthogonal arrays. Statist Sinica, 2015, 25: 1713-1734 | | [9] | Sheng C, Yang J Y, Liu M Q. A new rotation method for constructing orthogonal Latin hypercube designs. Sci China Math, 2023, 66(4): 839-854 | | [10] | Sun F S, Tang B X. A general rotation method for orthogonal Latin hypercubes. Biometrika, 2017, 104(2): 465-472 | | [11] | Wang Y P, Sun F S. On the maximin distance properties of orthogonal designs via the rotation. Sci China Math, 2023, 66(7): 1593-1608 | | [12] | He X. Rotated sphere packing designs. J Amer Statist Assoc, 2017, 112(520): 1430-1439 | | [13] | He X. Sliced rotated sphere packing designs. Technometrics, 2019, 61(1): 66-76 | | [14] | Yang J Y, Liu M Q. Construction of orthogonal and nearly orthogonal Latin hypercube designs from orthogonal designs. Statist Sinica, 2012, 22: 433-442 | | [15] | Ye K Q. Orthogonal column Latin hypercubes and their application in computer experiments. J Amer Statist Assoc, 1998, 93(444): 1430-1439 | | [16] | Fries A, Hunter W G. Minimum aberration $ 2^{k-p} $ designs. Technometrics, 1980, 22: 601-608 | | [17] | Tang B X, Deng L Y. Minimum $ G_2 $-aberration for nonregular fractional factorial designs. Ann Stat, 1999, 27(6): 1914-1926 | | [18] | Xu H Q, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Stat, 2001, 29(2): 549-560 | | [19] | Ma C X, Fang K T. A note on generalized aberration factorial designs. Metrika, 2001, 53: 85-89 | | [20] | Tang Y, Xu H Q. Wordlength enumertor for fractional factorial designs. Ann Stat, 2021, 49(1): 255-271 | | [21] | Tian Y, Xu H Q. A minimum aberration-type criterion for selecting space-filling designs. Biometrika, 2022, 109(2): 489-501 | | [22] | Tian Y, Xu H Q. Stratification pattern enumerator and its applications. J R Stat Soc Ser B Stat Methodol, 2024, 86(2): 364-385 | | [23] | Bierbrauer J, Edel Y, Schmid W C. Coding-theoretic constructions for $(t, m, s)$-nets and ordered orthogonal arrays. J Comb Des, 2002, 10(6): 403-418 | | [24] | Hickernell F J. Lattice rules: how well do they measure up?// Hellekalek P, Larcher G. Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol 138. New York: Springer, 1998 | | [25] | Ou Z J, Qin H, Cai X. Optimal foldover plans of three-level designs with minimum wrap-around $ L_2 $-discrepancy. Sci China Math, 2015, 58(7): 1537-1548 | | [26] | 雷轶菊, 欧祖军. U-型设计的对称化 $L_2$-偏差的下界. 数学物理学报, 2022, 42A(6): 1802-1811 | | [26] | Lei Y J, Ou Z J. Lower bounds for the symmetric $L_2$-discrepancy of U-type designs. Acta Math Sci, 2022, 42A(6): 1802-1811 |
|