| [1] |
Abels H, Moser M. Convergence of the Allen-Cahn equation with a nonlinear Robin boundary condition to mean curvature flow with contact angle close to $90^{\circ}$. SIAM J Math Anal, 2022, 54(1): 114-172
doi: 10.1137/21M1424925
|
| [2] |
Allard W K. On the first variation of a varifold. Ann of Math, 1972, 95(2): 417-491
doi: 10.2307/1970868
|
| [3] |
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Met, 1979, 27(6): 1085-1095
doi: 10.1016/0001-6160(79)90196-2
|
| [4] |
Ambrosto L, Gigli N, Savare G. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Second Edition, Lectures in Mathematics ETH Zurich. Basel: Birkhäuser Verlag, 2008
|
| [5] |
Bethuel F, Orlandi G, Smets D. Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature. Ann of Math, 2006, 163(2): 37-163
doi: 10.4007/annals
|
| [6] |
Brakke K A. The Motion of A Surface by its Mean Curvature. Mathematical Notes,Vol 20, Princeton: Princeton University Press, 1978
|
| [7] |
Bretin E, Perrier V. Phase field method for mean curvature flow with boundary constraints. ESAIM Math Model Numer Anal, 2012, 46(6): 1509-1526
doi: 10.1051/m2an/2012014
|
| [8] |
Bronsard L, Kohn R V. Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J Differential Equations, 1991, 90: 211-237
doi: 10.1016/0022-0396(91)90147-2
|
| [9] |
Bellettini G. Lecture Notes on Mean Curvature Flow:Barriers and Singular Perturbations. Pisa: Scuola Normale Superiore, 2013
|
| [10] |
Chen X. Generation and propagation of interfaces for reaction-diffusion equations. J Differential Equations, 1992, 96(1): 116-141
doi: 10.1016/0022-0396(92)90146-E
|
| [11] |
Chen X, Elliott C M, Gardiner A, Zhao J. Convergence of numerical solutions to the Allen-Cahn equation. Appl Anal, 1998, 69: 47-56
|
| [12] |
Chen Y, Giga Y, Goto S. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J Differential Geom, 1991, 33: 749-786
|
| [13] |
De Lellis C. Rectifiable Sets, Density and Tangent Measures. Zurich: European Mathematical Society, 2008
|
| [14] |
Evans L, Spruck J. Motion of level sets by mean curvature, I. J Differential Geom, 1991, 33: 635-681
|
| [15] |
Evans L C, Soner H M, Souganidis P E. Phase transitions and generalized motion by mean curvature. Comm Pure Appl Math, 1992, 45: 1097-1123
doi: 10.1002/cpa.v45:9
|
| [16] |
Giga Y, Onoue F, Takasao K. A varifold formulation of mean curvature flow with Dirichlet or dynamic boundary conditions. Differential Integral Equations, 2021, 34: 21-126
|
| [17] |
Han Q. Nonlinear Elliptic Equations of the Second Order. Volume 171. Providence: Amer Math Soc, 2016
|
| [18] |
Ilmanen T. Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J Differential Geom, 1993, 38: 417-461
|
| [19] |
Jiang G C, Wang C J, Zheng G F. Convergence of solutions of some Allen-Cahn equations to Brakke's mean curvature flow. Acta Appl Math, 2020, 167(1): 149-169
doi: 10.1007/s10440-019-00272-2
|
| [20] |
Katsoulakis M, Kossioris G T, Reitich F. Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions. J Geom Anal, 1995, 5: 255-279
doi: 10.1007/BF02921677
|
| [21] |
Kagaya T. Convergence of the Allen-Cahn equation with Neumann boundary condition on non-convex domains. Math Ann, 2019, 373: 1485-1528
doi: 10.1007/s00208-018-1720-x
|
| [22] |
Kim L, Tonegawa Y. On the mean curvature flow of grain boundaries. Ann Inst Fourier (Grenoble), 2017, 67(1): 43-142
doi: 10.5802/aif.3077
|
| [23] |
Mizuno M, Tonegawa Y. Convergence of the Allen-Cahn equation with Neumann boundary conditions. SIAM J Math Anal, 2015, 47(3): 1906-1932
doi: 10.1137/140987808
|
| [24] |
Modica L. Gradient theory of phase transitions and minimal interface criteria. Arch Rational Mech Anal, 1987, 98: 123-142
doi: 10.1007/BF00251230
|
| [25] |
Owen N, Rubinstein J, Sternberg P. Minimizers and gradient flows for singularly perturbed bi-stable potentials with a dirichlet condition. Proc Roy Soc London A, 1990, 429: 505-532
|
| [26] |
Qi Y W, Zheng G F. Convergence of solutions of the weighted Allen-Cahn equations to Brakke type flow. Calc Var Partial Differential Equations, 2018, 57: Article 133
|
| [27] |
Simon L. Lectures on Geometric Measure Theory. Canberra: Australian National University Centre for Mathematical Analysis, 1983
|
| [28] |
Soner H M. Ginzburg-Landau equation and motion by mean curvature. I. Convergence J Geom Anal, 1997, 7: 437-475
|
| [29] |
Soner H M. Ginzburg-Landau equation and motion by mean curvature. II. Development of the initial interface. J Geom Anal, 1997, 7: 477-491
doi: 10.1007/BF02921629
|
| [30] |
Takasao K, Tonegawa Y. Existence and regularity of mean curvature flow with transport term in higher dimensions. Math Ann, 2016, 364: 857-935
doi: 10.1007/s00208-015-1237-5
|
| [31] |
Tonegawa Y. Integrality of varifolds in the singular limit of reaction-diffusion equations. Hiroshima Math J, 2003, 33: 323-341
|