| [1] |
Kirchhoff G. Mechanik. Gennany: Teubner Leipzig, 1883
|
| [2] |
Liu J, Liao J F, Tang C L. Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb{R}^N$. Journal of Mathematical Analysis and Applications, 2015, 429(2): 1153-1172
doi: 10.1016/j.jmaa.2015.04.066
|
| [3] |
Miyagaki O H, Paes-Leme L C, Rodrigues B M. Multiplicity of positive solutions for the Kirchhoff-type equations with critical exponent in $\mathbb{R}^n$. Computers & Mathematics with Applications, 2018, 75(9): 3201-3212
doi: 10.1016/j.camwa.2018.01.041
|
| [4] |
Ke X F, Liu J, Liao J F. Positive solutions for a critical $p$-Laplacian problem with a Kirchhoff term. Computers & Mathematics with Applications, 2019, 77(9): 2279-2290
doi: 10.1016/j.camwa.2018.12.021
|
| [5] |
Li G B, Niu Y H. The existence of nontrivial solutions for $p$-Kirchhoff type equations with critical exponent in $\mathbb{R}^N$. Scientia Sinica Mathematica, 2019, 49(2): 139-160
doi: 10.1360/N012017-00142
|
| [6] |
Yao X Z, Mu C L. Multiplicity of solutions for Kirchhoff type equations involving critical Sobolev exponents in high dimension. Mathematical Methods in the Applied Sciences, 2016, 39(13): 3722-3734
doi: 10.1002/mma.v39.13
|
| [7] |
Tang C L, Zhong X J. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure and Applied Analysis, 2017, 16(2): 611-627
|
| [8] |
He X M, Wu X. Multiple sign-changing solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Mathematical Methods in the Applied Sciences, 2018, 41(2): 512-524
doi: 10.1002/mma.v41.2
|
| [9] |
Sun Z H, Lei Y F. Infinitely many sign-changing solutions to Kirchhoff-type equations. Analysis and Mathematical Physics, 2019, 9(1): 565-584
doi: 10.1007/s13324-018-0218-8
|
| [10] |
Chen X P, Tang C L. Least energy sign-changing solutions for Kirchhoff-type problems with potential well. Journal of Mathematical Physics, 2022, 63(6): Art 061501
|
| [11] |
Zhao Y X, Wu X P, Tang C L. Ground state sign-changing solutions for Schördinger-Kirchhoff-type problem with critical growth. Journal of Mathematical Physics, 2022, 63(10): Art 101503
|
| [12] |
Fan H N. Existence of ground state solutions for Kirchhoff-type problems involving critical Sobolev exponents. Mathematical Methods in the Applied Sciences, 2018, 41(1): 371-385
doi: 10.1002/mma.v41.1
|
| [13] |
Wang Y. The third solution for a Kirchhoff-type problem with a critical exponent. Journal of Mathematical Analysis and Applications, 2023, 526(1): Art 127174
|
| [14] |
Luo L P, Tang C L. Existence and concentration of ground state solutions for critical Kirchhoff-type equation with steep potential well. Complex Variables and Elliptic Equations, 2022, 67(7): 1756-1771
doi: 10.1080/17476933.2021.1897795
|
| [15] |
Liu J, Liu T, Pan H L. A result on a non-autonomous Kirchhoff type equation involving critical term. Applied Mathematics Letters, 2018, 85: 82-87
doi: 10.1016/j.aml.2018.05.026
|
| [16] |
Lei C Y, Suo H M, Chu C M, Guo L T. On ground state solutions for a Kirchhoff type equation with critical growth. Computers & Mathematics with Applications, 2016, 72(3): 729-740
doi: 10.1016/j.camwa.2016.05.027
|
| [17] |
Liu J, Liu T, Li H Y. Ground state solution on a Kirchhoff type equation involving two potentials. Applied Mathematics Letters, 2019, 94: 149-154
doi: 10.1016/j.aml.2019.02.035
|
| [18] |
Liu J, Liao J F, Pan H L. Multiple positive solutions for a Kirchhoff type equation involving two potentials. Mathematical Methods in the Applied Sciences, 2020, 43(17): 10346-10354
doi: 10.1002/mma.v43.17
|
| [19] |
Ma T F. Positive solutions for a nonlinear nonlocal elliptic transmission problem. Applied Mathematics Letters, 2003, 16(2): 243-248
doi: 10.1016/S0893-9659(03)80038-1
|
| [20] |
Wang F L, Avci M, An Y K. Existence of solutions for fourth order elliptic equations of Kirchhoff type. Journal of Mathematical Analysis and Applications, 2014, 409: 140-146
doi: 10.1016/j.jmaa.2013.07.003
|
| [21] |
Cabada A, Figueiredo G M. A generalization of an extensible beam equation with critical growth in $\mathbb{R}^N$. Nonlinear Analysis-Real World Applications, 2014, 20: 134-142
doi: 10.1016/j.nonrwa.2014.05.005
|
| [22] |
Zhang J H, Liang S H. Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type with critical growth in $\mathbb{R}^N$. Journal of Mathematical Physics, 2016, 57(11): Art 111505
|
| [23] |
Pu H L, Li S Q, Liang S H, Repov D D. Nodal solutions of fourth-order Kirchhoff equations with critical growth in $\mathbb{R}^N$. Electronic Journal of Differential Equations, 2021, 1-20
|
| [24] |
Lions P L. The concentration-compactness principle in the calculus of variations-the locally compact case.1. Annales De L Institut Henri Poincare-Analyse Non Lineaire, 1984, 1(2): 109-145
|
| [25] |
Lions P L. The concentration-compactness principle in the calculus of variations-the locally compact case.2. Annales De L Institut Henri Poincare-Analyse Non Lineaire, 1984, 1(4): 223-283
|
| [26] |
Ekeland I. On the variational principle. Journal of Mathematical Analysis and Applications, 1974, 47(2): 324-353
doi: 10.1016/0022-247X(74)90025-0
|
| [27] |
Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. Journal of Functional Analysis, 1973, 14(4): 349-381
doi: 10.1016/0022-1236(73)90051-7
|