| [1] |
Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method. Calc Var, 2016, 55: Article 47
|
| [2] |
Ambrosio V. Multiplicity of positive solutions for a class of fractional schrödinger equations via penalization method. Annali di Matematica, 2017, 196: 2043-2062
doi: 10.1007/s10231-017-0652-5
|
| [3] |
An X, Fang Y. Existence and uniqueness of positive ground state solutions of general logarithmic Schrödinger equations. Journal of Differential Equations, 2025, 422: 57-77
doi: 10.1016/j.jde.2024.12.012
|
| [4] |
An X, Peng S. Multi-peak semiclassical bound states for fractional Schrödinger equations with fast decaying potentials. Electronic Research Archive, 2022, 30(2): 585-614
doi: 10.3934/era.2022031
|
| [5] |
An X, Yang X. Multi-peak solutions for logarithmic Schrödinger equations with potentials unbounded below. Discrete and Continuous Dynamical Systems, 2023, 43(11): 3940-3968
doi: 10.3934/dcds.2023073
|
| [6] |
An X, Yang X. Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations. J Math Phys, 2023, 64(1): Art 011506
|
| [7] |
An X, Yang X. Semiclassical solutions for fractional logarithmic Schrodinger equations with potentials unbounded below. Topol Methods Nonlinear Anal, 2024, 64: 383-407
|
| [8] |
Ardila A H. Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Analysis, 2017, 155: 52-64
doi: 10.1016/j.na.2017.01.006
|
| [9] |
Cazenave T. Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal, 1983, 7: 1127-1140
doi: 10.1016/0362-546X(83)90022-6
|
| [10] |
Chen W, Li Y, Ma P. The Fractional Laplacian. Singapore: World Scientific Publishing, 2019
|
| [11] |
d'Avenia P, Squassina M, Zenari M. Fractional logarithmic Schrödinger equations. Math Meth Appl Sci, 2015, 38: 5207-5216
doi: 10.1002/mma.v38.18
|
| [12] |
Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5): 521-573
doi: 10.1016/j.bulsci.2011.12.004
|
| [13] |
Dipierro S, Medina M, Valdinoci E. Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$.Pisa Edizioni della Normale, 2017
|
| [14] |
Dipierro S, Medina M, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche, 2013, 68: Article 1
|
| [15] |
Dong H, Kim D. On $L^p$-estimates for a class of non-local elliptic equations. J Funct Anal, 2012, 262: 1166-1199
doi: 10.1016/j.jfa.2011.11.002
|
| [16] |
Felmer P, Quaas A, Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237-1262
doi: 10.1017/S0308210511000746
|
| [17] |
Figueiredo G M, Siciliano G. A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $\mathbb{R}^N$. Nonlinear Diff Eq Appl, 2016, 23: Art 12
|
| [18] |
Frank L, Lenzmann E. Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Math, 2013, 210: 261-318
doi: 10.1007/s11511-013-0095-9
|
| [19] |
Frank L, Lenzmann E, Silvestre L. Uniqueness of radial solutions for the fractional Laplacians. Comm Pure Appl Math, 2016, 69: 1671-1726
doi: 10.1002/cpa.v69.9
|
| [20] |
Guerrero P, López J L, Nieto J. Global $H^1$ solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal Real World Appl, 2010, 1: 79-87
|
| [21] |
Kabeya Y, Tanaka K. Uniqueness of positive radial solutions of semilinear elliptic equations in $\mathbb{R}^N$ and Séré's non-degeneracy condition. Comm Partial Differential Equations, 1999, 24: 563-598
doi: 10.1080/03605309908821434
|
| [22] |
Kwong M K. Uniqueness of positive solutions of $-\Delta u - u + u^p = 0$ in $\mathbb{R}^n$. Arch Ration Mech Anal, 1989, 105(3): 243-266
doi: 10.1007/BF00251502
|
| [23] |
Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66(5): Art 056108
|
| [24] |
Laskin N. Fractional quantum mechanics and Levy path integrals. Phys Lett A, 2000, 268: 298-305
doi: 10.1016/S0375-9601(00)00201-2
|
| [25] |
Lions P L. Symétrie et compacité dans les espaces de Sobolev. J Funct Anal, 1982, 49: 315-334
doi: 10.1016/0022-1236(82)90072-6
|
| [26] |
McLeod K, Serrin J. Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb{R}^n$. Arch Rat Mech Anal, 1987, 99: 115-145
doi: 10.1007/BF00275874
|
| [27] |
McLeod M. Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb{R}^n$: II. Trans Am Math Soc, 1993, 339: 495-505
|
| [28] |
Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 29: 897-923
doi: 10.1512/iumj.1980.29.29061
|
| [29] |
Servadei R, Valdinoci E. Weak and viscosity solutions of the fractional Laplace equation. Publ Mat, 2014, 58: 133-154
doi: 10.5565/PUBLMAT_58114_06
|
| [30] |
Squassina M, Szulkin A. Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc Var Partial Differential Equations, 2015, 54: 585-597
doi: 10.1007/s00526-014-0796-8
|
| [31] |
Szulkin A. Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann Inst H Poincaré Anal Non Linéaire, 1986, 3: 77-109
doi: 10.4171/aihpc
|
| [32] |
Tanaka K, Zhang C. Multi-bump solutions for logarithmic Schrödinger equations. Calc Var Partial Differ Equ, 2017, 56: Article 33
|
| [33] |
Wang Z Q, Zhang C. Convergence from power-law to logarithm-law in nonlinear scalar field equations. Arch Ration Mech Anal, 2019, 231(1): 45-61
doi: 10.1007/s00205-018-1270-0
|
| [34] |
Zhang C, Zhang X. Bound states for logarithmic Schrödinger equations with potentials unbounded below. Calc Var, 2020, 59: Article 23
|
| [35] |
Zloshchastiev K G. Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Gravit Cosmol, 2010, 16: 288-297
doi: 10.1134/S0202289310040067
|