| [1] |
Alexandre R, Morimoto Y, Ukai S, et al. Regularizing effect and local existence for non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198(1): 39-123
doi: 10.1007/s00205-010-0290-1
|
| [2] |
Alexandre R, Morimoto Y, Ukai S, et al. Global existence and full regularity of the Boltzmann equation without angular cutoff. Comm Math Phys, 2011, 304(2): 513-581
doi: 10.1007/s00220-011-1242-9
|
| [3] |
Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions. Arch Ration Mech Anal, 2011, 202(2): 599-661
doi: 10.1007/s00205-011-0432-0
|
| [4] |
Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J Funct Anal, 2012, 262(3): 915-1010
doi: 10.1016/j.jfa.2011.10.007
|
| [5] |
Baranger C, Mouhot C. Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev Mat Iberoamericana, 2005, 21(3): 819-841
doi: 10.4171/rmi
|
| [6] |
Cao H M, Li H G, Xu C J, et al. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinet Relat Models, 2019, 12(4): 829-884
doi: 10.3934/krm.2019032
|
| [7] |
Desvillettes L, Villani C. On the spatially homogeneous Landau equation for hard potentials Ⅰ. Existence, uniqueness and smoothness. Comm Partial Differential Equations, 2000, 25(1): 179-259
doi: 10.1080/03605300008821512
|
| [8] |
Desvillettes L, Villani C. On the spatially homogeneous Landau equation for hard potentials Ⅱ. H-theorem theorem and applications. Comm Partial Differential Equations, 2000, 25(2): 261-298
doi: 10.1080/03605300008821513
|
| [9] |
Duan R J, Huang F M, Wang Y, et al. Global well-posedness of the Boltzmann equation with large amplitude initial data. Arch Ration Mech Anal, 2017, 225(1): 375-424
doi: 10.1007/s00205-017-1107-2
|
| [10] |
Duan R J, Sakamoto S. Solution to the Boltzmann equation in velocity-weighted Chemin-Lerner type spaces. Kinet Relat Models, 2018, 11(6): 1301-1331
doi: 10.3934/krm.2018051
|
| [11] |
Duan R J, Strain R M. Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$. Arch Ration Mech Anal, 2011, 199(1): 291-328
doi: 10.1007/s00205-010-0318-6
|
| [12] |
Duan R J, Ukai S, Yang T, et al. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277(1): 189-236
doi: 10.1007/s00220-007-0366-4
|
| [13] |
Duan R J, Liu S Q, Sakamoto S, et al. Global mild solutions of the Landau and non-cutoff Boltzmann equations. Comm Pure Appl Math, 2021, 74(5): 932-1020
doi: 10.1002/cpa.v74.5
|
| [14] |
Duan R J, Liu S Q, Xu J. Global well-posedness in spatially critical Besov space for the Boltzmann equation. Arch Ration Mech Anal, 2016, 220(2): 711-745
doi: 10.1007/s00205-015-0940-4
|
| [15] |
Duan R J, Sakamoto S, Ueda Y. An $L^1_k\cap L^p_k$ approach for the non-cutoff Boltzmann equation in $\mathbb{R}^3$. SIAM J Math Anal, 2024, 56(1): 762-800
doi: 10.1137/22M1533232
|
| [16] |
Gressman P T, Strain R M. Global clasical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24(3): 771-847
doi: 10.1090/jams/2011-24-03
|
| [17] |
Guo Y. The Landau equation in a periodic box. Comm Math Phys, 2002, 231(3): 391-434
doi: 10.1007/s00220-002-0729-9
|
| [18] |
Guo Y. Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch Ration Mech Anal, 2003, 169(4): 305-353
doi: 10.1007/s00205-003-0262-9
|
| [19] |
Guo Y. Decay and continuity of the Boltzmann equation in bounded domains. Arch Ration Mech Anal, 2010, 197(3): 713-809
doi: 10.1007/s00205-009-0285-y
|
| [20] |
Hsiao L, Yu H J. On the Cauchy problem of the Boltzmann and Landau equations with soft potentials. Quart Appl Math, 2007, 65(2): 281-315
doi: 10.1090/qam/2007-65-02
|
| [21] |
Kawashima S. The Boltzmann equation and thirteen moments. Japan J Appl Math, 1990, 7(2): 301-320
doi: 10.1007/BF03167846
|
| [22] |
Kawashima S, Nishibata S, Nishikawa M. $L^p$ energy method for multi-dimensional viscous conservation laws and application to the stability of planar waves. J Hyperbolic Differ Equ, 2004, 1(3): 581-603
doi: 10.1142/S0219891604000196
|
| [23] |
Lei Z, Lin F. Global mild solutions of Navier-Stokes equations. Comm Pure Appl Math, 2011 64(9): 1297-1304
doi: 10.1002/cpa.v64.9
|
| [24] |
Liu L, Zhang L. Decay of the Boltzmann equation in spatial critical Besov space. J Differential Equations, 2021, 286(101): 751-784
doi: 10.1016/j.jde.2021.03.038
|
| [25] |
Morimoto Y, Sakamoto S. Global solutions in the critical Besov space for the non-cutoff Boltzmann equation. J Differential Equations, 2016, 261(7): 4073-4134
doi: 10.1016/j.jde.2016.06.017
|
| [26] |
Mouhot C. Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Comm Partial Differential Equations, 2006, 31(7): 1321-1348
doi: 10.1080/03605300600635004
|
| [27] |
Sohinger V, Strain R M. The Boltzmann equation, Besov spaces, and optimal time decay rates in $\mathbb{R}^n_x$. Adv Math, 2014, 261: 274-332
doi: 10.1016/j.aim.2014.04.012
|
| [28] |
Strain R M. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet Relat Models, 2012, 5(3): 583-613
doi: 10.3934/krm.2012.5.583
|
| [29] |
Ukai S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc Japan Acad, 1974, 50(3): 179-184
|
| [30] |
Ukai S, Asano K. On the Cauchy problem of the Boltzmann equation with a soft potential. Publ Res Inst Math Sci, 1982, 18(2): 57-99
doi: 10.4171/prims
|
| [31] |
Ukai S, Yang T. The Boltzmann equation in the space $L^2\cap L^{\infty}_{\beta}$: Global and time-periodic solutions. Anal Appl, 2006, 4(3): 263-310
doi: 10.1142/S0219530506000784
|
| [32] |
Villani C. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch Rational Mech Anal, 1998, 143(3): 273-307
doi: 10.1007/s002050050106
|