Infinitely Many Solutions for Some Biharmonic Problems with Navier Boundary Condition
Ke Jin1(), Lushun Wang2,*()
1Zhejiang College, Shanghai University of Finance and Economics, Zhejiang, Jinhua 321013 2School of Mathematical sciences, Zhejiang Normal University, Zhejiang, Jinhua 321004
Ke Jin, Lushun Wang. Infinitely Many Solutions for Some Biharmonic Problems with Navier Boundary Condition[J]. Acta mathematica scientia,Series A, 2025, 45(6): 1875-1887.
Alves C O, Alânnio B Nóbrega. Nodal ground state solution to a biharmonic equation via dual method. J Diff Equa, 2016, 260(6): 5174-5201
doi: 10.1016/j.jde.2015.12.014
[2]
Bahri A. Topological results on a certain class of functionals and application. J Funct Anal, 1981, 41(3): 397-427
doi: 10.1016/0022-1236(81)90083-5
[3]
Bartsch T, Weth T, Willem M. A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc Var, 2003, 18(3): 253-268
doi: 10.1007/s00526-003-0198-9
[4]
Birman M $\check{\rm S}$. Variational methods of solution of boundary problems analogous to the method of Trefftz. Vestnik Leningrad Univ, 1956, 11: 69-89
[5]
Caristi G, Mitidieri E. Maximum principles for a class of non cooperative elliptic systems. Delft Pro Rep, 1990, 14(1): 33-56
[6]
Caristi G, Mitidieri E. Further results on maximum principles for noncooperative elliptic systems. Nonlinear Ana TMA, 1991, 17(6): 547-558
[7]
Chang S Y A, Yang P C. Extremal metrics of zeta function determinants on 4-manifolds. Annals of Math, 1995, 142(1): 171-212
doi: 10.2307/2118613
[8]
Clément Ph, de Figueiredo D G, Positive solutions of semilinear elliptic systems. Commun Partial Diff Equ, 1992, 17(5/6): 923-940
doi: 10.1080/03605309208820869
[9]
de Figueiredo D G, Mitidieri E. Maximum principles for linear elliptic systems. RIMUT, 1990, 22: 36-66
[10]
Djadli Z, Hebey E, Ledoux M. Paneitz-type operators and applications. Duke Math J, 2000, 104(1): 129-169
[11]
Ebobisse F, Ahmedou M O. On a nonlinear fourth order elliptic equation involving the Sobolev critical exponent. Nonlinear Ana TMA, 2003, 52(5): 1535-1552
[12]
Kirchhoff G. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J Reine Angew Math, 1850, 1850(40): 51-88
doi: 10.1515/crll.1850.40.51
[13]
Lazer A, McKenna P. Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev, 1990, 32(4): 537-578
doi: 10.1137/1032120
[14]
McKenna P, Walter W. Travelling waves in a suspension bridge. SIAM J Appl Math, 1990, 50(3): 703-715
doi: 10.1137/0150041
[15]
Oswald P. On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball. Comment Math Univ Carolinae, 1985, 26(3): 565-577
[16]
Paneitz S M. Essential unitarization of symplectics and application to field quantization. J Funct Anal, 1982, 48(3): 310-359
doi: 10.1016/0022-1236(82)90091-X
[17]
Soranzo R. A priori estimates and existence of positive solutions of a superlinear polyharmonic equation. Dynam Systems Appl, 1994, 3(4): 465-487
[18]
Sweers G. A strong maximum principle for a noncooperative elliptic system. SIAM J Math Anal, 1989, 20(2): 367-371
doi: 10.1137/0520023
[19]
Van der Vorst R C A M. Best constant for the embedding of the space $H^2 \cap H^1_0(\Omega)$ into $L^{2N/(N-4)}(\Omega)$. Diff Int Equa, 1993, 6(2): 259-276
[20]
von Wahl W, McLeod J B. Semilinear elliptic and parabolic equations of arbitrary order. Proc Royal Soc Edinburgh A, 1978, 78(3/4): 193-207
doi: 10.1017/S0308210500012397