数学物理学报 ›› 2025, Vol. 45 ›› Issue (6): 1888-1906.

• • 上一篇    下一篇

二次非线性薛定谔方程组的同步解——献给李工宝教授 70 寿辰

王春花()   

  1. 华中师范大学数学与统计学院 湖北武汉 430079
  • 收稿日期:2025-04-25 修回日期:2025-07-24 出版日期:2025-12-26 发布日期:2025-11-18
  • 作者简介:王春花,E-mail:chunhuawang@ccnu.edu.cn
  • 基金资助:
    国家自然科学基金(12471106)

Synchronized Solutions to a Nonlinear Schrödinger System With Quadratic Nonlinearities

Chunhua Wang()   

  1. School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079
  • Received:2025-04-25 Revised:2025-07-24 Online:2025-12-26 Published:2025-11-18
  • Supported by:
    NSFC(12471106)

摘要:

在该文中,作者研究下述二次非线性薛定谔方程组

$\begin{align*}\label{sps} \begin{cases} -\epsilon^2\Delta u_1+V_1(x)u_1=\alpha u_1 u_{2}, \ x\in \mathbb{R}^N,\\ -\epsilon^2\Delta u_2+V_2(x)u_2=\frac{\alpha}{2}u_1^2+\beta u_2^{2}, \ x\in\mathbb{R}^N, \end{cases} \end{align*}$

其中$2\leq N<6$, $\epsilon>0$为小参数,$\alpha>0$和$\alpha >\beta,$ 位势$V_i$是正的,$V_i$, $|\nabla V_i| \in L^\infty(\mathbb{R}^N)$.当$\epsilon$趋于0时, 应用有限维约化方法我们构造了该方程组集中在由位势函数$V_{i}(x)(i=1,2)$构成的一个新函数的非退化临界点的同步解. 此外,应用反证法结合局部的Pohozaev恒等式和爆破分析技巧,还证明了单峰解的唯一性.该文的结果将[Gross M. Ann Inst H Poincar'e C Anal Non Lin'eaire, 2002]中关于单个非线性薛定谔方程的单峰解的结果推广到了该模型.

关键词: 薛定谔方程组, 同步解, 唯一性, 有限维约化, Pohozaev 恒等式.

Abstract:

In this paper, we are concerned with the following nonlinear Schrödinger system with quadratic nonlinearities

$\begin{align*} \begin{cases} -\epsilon^2\Delta u_1+V_1(x)u_1=\alpha u_1 u_{2} \ \text{ in } \mathbb{R}^N,\\ -\epsilon^2\Delta u_2+V_2(x)u_2=\frac{\alpha}{2}u_1^2+\beta u_2^{2} \ \text{ in } \mathbb{R}^N, \end{cases} \end{align*}$

where$2\leq N<6$, $\epsilon>0$is a small parameter,$\alpha>0$and$\alpha >\beta,$ the functions $V_i$ are positive, $V_i$, $|\nabla V_i| \in L^\infty(\mathbb{R}^N).$ As $\epsilon$ goes to zero, applying the finite dimensional reduction method, we construct synchronized solution which concentrates at the non-degenerate critical point of a new function constructed by the potential functions $V_{i}(x)(i=1,2).$ Moreover, by the contradiction argument combining some local Pohozeav identities and the blow-up technique we prove the uniqueness of this single-peak solution. Our results extend the results in [Gross M. Ann Inst H Poincar'e C Anal Non Lin'eaire, 2002] about a single Schrödinger equation to our system.

Key words: Schr?dinger system, synchronized solutions, uniqueness, ?nite dimensional reduction, Pohzeav identity.

中图分类号:  (Communication, education, history, and philosophy )

  • 01