| [1] |
Ambrosetti A, Wang Z Q. Positive solutions to a class of quasilinear elliptic equations on $\mathbb{R}$. Discret Cont Dyna Syst, 2003, 9(1): 55-68
|
| [2] |
Cazenave T. Semilinear Schrödinger Equations, Vol 10. New York: New York University, 2003
|
| [3] |
Colin M, Jeanjean L. Solutions for quasilinear Schrödinger equation: A dual approach. Nonlinear Anal, 2004, 56(2): 213-226
doi: 10.1016/j.na.2003.09.008
|
| [4] |
Colin M, Jeanjean L, Squassina M. Stability and instability results for standing waves of quasilinear Schrödinger equations. Nonlinearity, 2010, 23(6): 1353-1385
doi: 10.1088/0951-7715/23/6/006
|
| [5] |
Caliari M, Squassina M. On a bifurcation value related to quasilinear Schrödinger equations. J Fixed Point Theory Appl, 2012, 12: 121-133
doi: 10.1007/s11784-012-0088-x
|
| [6] |
do Ó J M, Miyagasi O, Soares S. Soliton solutions for quasilinear Schrödinger equations with critical growth. J Differential Equations, 2010, 248(4): 722-744
doi: 10.1016/j.jde.2009.11.030
|
| [7] |
Fang X D, Szulkin A. Multiple solutions for a quasilinear Schrödinger equation. J Differential Equations, 2013, 254(4): 2015-2032
doi: 10.1016/j.jde.2012.11.017
|
| [8] |
Gidas B, Ni W M, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Mathematical analysis and application Part A. New York: Academic Press, 1981,7: 360-402
|
| [9] |
Goldman M V, Porkolab M. Upper hybrid solitons ans oscillating two-stream instabilities. Phys Fluids, 1976, 19: 872-881
doi: 10.1063/1.861553
|
| [10] |
Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys B, 1980, 37: 83-87
|
| [11] |
Jeanjean L, Luo T J. Sharp nonexistence results of prescribed $L^2$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations. Z Angrew Math Phys, 2013, 64: 937-954
|
| [12] |
Jeanjean L, Luo T J, Wang Z Q. Multiple normalized solutions for quasi-linear Schrödinger equations. J Differential Equations, 2015, 259: 3894-3928
doi: 10.1016/j.jde.2015.05.008
|
| [13] |
Jeanjean L, Zhang J J, Zhong X X.Existence and limiting profile of energy ground states for a quasi-linear Schrödinger equations: Mass super-critical case. 10.48550/arXiv.2501.03845, 2025
|
| [14] |
Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbb{R}^N$. Arch Rational Mech Anal, 1989, 105: 243-266
doi: 10.1007/BF00251502
|
| [15] |
Li H W, Zou W M. Quasilinear Schrödinger equations: ground state and infinitely many normalized solutions. Pac J Math, 2023, 322: 99-138
doi: 10.2140/pjm
|
| [16] |
Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1(4): 223-283
doi: 10.4171/aihpc
|
| [17] |
Liu X Q, Liu J Q, Wang Z Q. Localized nodal solutions for quasilinear Schrödinger equations. J Differential Equations, 2019, 267: 7411-7461
doi: 10.1016/j.jde.2019.08.003
|
| [18] |
Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations I. Proc Amer Math Soc, 2003, 131: 473-493
|
| [19] |
Liu J Q, Wang Y, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations II. J Differential Equations, 2003, 187: 473-493
doi: 10.1016/S0022-0396(02)00064-5
|
| [20] |
Liu J Q, Wang Y, Wang Z Q. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm PDE, 2004, 29(5/6): 879-901
doi: 10.1081/PDE-120037335
|
| [21] |
Liu J Q, Wang Z Q, Guo Y X. Multibump solutions for quasilinear elliptic equations. J Funct Anal, 2012, 262: 4040-4102
doi: 10.1016/j.jfa.2012.02.009
|
| [22] |
Liu X Q, Liu J Q, Wang Z Q. Quasilinear elliptic equations via perturbation method. Proc Amer Math Soc, 2013, 141: 253-263
doi: 10.1090/proc/2013-141-01
|
| [23] |
Litvak A G, Sergeev A M. One dimensional collapse of plasma waves. JETP Lett, 1978, 27(10): 517-520
|
| [24] |
Poppenburg M, Schmitt K, Wang Z Q. On the existence of solutions to quasilinear Schrodinger equations. Calc Var PDE, 2002, 14: 329-344
doi: 10.1007/s005260100105
|
| [25] |
Stuart C A. Bifurcation for Dirichlet problems without eigenvalues. Proc London Math Soc, 1982, 45: 169-192
|
| [26] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun Math Phys, 1983, 87: 567-576
doi: 10.1007/BF01208265
|
| [27] |
Willem M. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24. Boston: Birkhäuser Boston, Inc, 1996
|
| [28] |
Ye H Y, Ying Y Y. The existence of normalized solutions for $L^2$-critical quasilinear Schrödinger equations. J Math Anal Appl, 2021, 497: Art 124839
|