| [1] |
Berestycki H, Lions P L. Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch Rational Mech Anal, 1983, 82: 347-375
doi: 10.1007/BF00250556
|
| [2] |
Carles R, Klein C, Sparber C. On ground state (in-)stability in multi-dimensional cubic-quintic nonlinear Schrödinger equations. ESAIM Math Model Numer Anal, 2023, 57: 423-443
doi: 10.1051/m2an/2022085
|
| [3] |
Carles R, Sparber C. Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. Rev Math Phys, 2021, 33: Art 2150004
|
| [4] |
Cazenave T. Semilinear Schrödinger Equations, Vol 10 of Courant Lecture Notes in Mathematics Providence RI: American Mathematical Society, 2003
|
| [5] |
Gontier D, Lewin M, Nazar F Q. The nonlinear Schrödinger equation for orthonormal functions: existence of ground states. Arch Ration Mech Anal, 2021, 240: 1203-1254
doi: 10.1007/s00205-021-01634-7
|
| [6] |
Jeanjean L, Lu S S. On global minimizers for a mass constrained problem. Calc Var Partial Differential Equations, 2022, 61(6): Article 214
|
| [7] |
Jeanjean L, Lu S S. Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schrödinger equation. Math Models Methods Appl Sci, 2022, 32: 1557-1588
doi: 10.1142/S0218202522500361
|
| [8] |
Killip R, Murphy J, Visan M. Scattering for the cubic-quintic NLS: Crossing the virial threshold. SIAM J Math Anal, 2021, 53(5): 5803-5812
doi: 10.1137/20M1381824
|
| [9] |
Killip R, Oh T, Pocovnicu O, Visan M. Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on $\mathbb{R}^{3}$. Arch Ration Mech Anal, 2017, 225(1): 469-548
doi: 10.1007/s00205-017-1109-0
|
| [10] |
Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p=0 \ \text{in} \ \mathbb{R}^n$. Arch Rational Mech Anal, 1989, 105: 243-266
doi: 10.1007/BF00251502
|
| [11] |
Lewin M, Nodari S R. The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc Var Partial Differential Equations, 2020, 59: Article 197
|
| [12] |
Lieb E H. Density functionals for Coulomb systems. Int J Quantum Chem, 1983, 24(3): 243-277
doi: 10.1002/qua.v24:3
|
| [13] |
Lieb E H, Loss M, Analysis, 2nd ed. Providence RI: American Mathematical Society, 2001
|
| [14] |
Li D K, Wang Q X.Thomas-Fermi limit for the cubic-quintic Schrödinger energy in the whole space and bounded domain. arXiv: 2410.14762, 2024
|
| [15] |
Molle R, Moroz V, Riey G. Normalised solutions and limit profiles of the defocusing Gross-Pitaevskii-Poisson equation. arXiv: 2308.04527, 2023
|
| [16] |
Moroz V, Van Schaftingen J, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153-184
doi: 10.1016/j.jfa.2013.04.007
|
| [17] |
Soave N. Normalized ground state for the NLS equations with combined nonlinearities: The Soboev critical case. J Funct Anal, 2020, 279: Art 108610
|
| [18] |
Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55(2): 149-162
doi: 10.1007/BF01626517
|
| [19] |
Tao T, Visan M, Zhang X. The nonlinear Schrödinger equation with combined power-type nonlinearities. Comm Partial Differential Equations, 2007, 32(8): 1281-1343
doi: 10.1080/03605300701588805
|
| [20] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87(4): 567-576
doi: 10.1007/BF01208265
|