| [1] |
Barles G, Imbert C. Second-order elliptic integral-differential equations: viscosity solutions' theory revisited. Ann Inst Henri Poincaré, 2008, 25(3): 567-585
|
| [2] |
Benachour S, Karch G, Laurençot P. Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations. J Math Pures Appl, 2004, 83(9): 1275-1308
doi: 10.1016/j.matpur.2004.03.002
|
| [3] |
Benachour S, Laurençot P. Global solutions to viscous Hamilton-Jacobi equations with irregular initial data. Commun Partial Differ Equ, 1999, 24: 1999-2021
doi: 10.1080/03605309908821492
|
| [4] |
Ben-Artzi M, Souplet P, Weissler F B. The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces. J Math Pures Appl, 2002, 81: 343-378
doi: 10.1016/S0021-7824(01)01243-0
|
| [5] |
Chen W X, Hu Y Y. Monotonicity of positive solutions for nonlocal problems in unbounded domains. J Funct Anal, 2021, 281(9): Art 109187
|
| [6] |
Chen W X, Li Y, Ma P. The Fractional Laplacian. New Jersey: World Scientific Publishing Company Private Limited, 2019
|
| [7] |
Chen W X, Li Y, Zhang R. A direct method of moving spheres on fractional order equations. J Funct Anal, 2017, 272: 4131-4157
doi: 10.1016/j.jfa.2017.02.022
|
| [8] |
Chen W X, Wang P Y, Niu Y H, Hu Y Y. Asymptotic method of moving planes for fractional parabolic equations. Adv Math, 2021, 377: Art 107463
|
| [9] |
Chen X Y, Poláčik P, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. J Reine Angew Math, 1996, 472: 17-51
|
| [10] |
Dai W, Liu Z, Lu G Z. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Commun Pure Appl Anal, 2017, 16: 1253-1264
|
| [11] |
Dai W, Qin G L. Classification of nonnegative classical solutions to third-order equations. Adv Math, 2018, 328: 822-857
doi: 10.1016/j.aim.2018.02.016
|
| [12] |
Gilding B, Guedda M, Kersner R. The Cauchy problem for $u_t=\triangle u+|\nabla u|^q$. J Math Anal Appl, 2003, 284: 733-755
doi: 10.1016/S0022-247X(03)00395-0
|
| [13] |
Hess P, Poláčik P, Symmetry and convergence properties for nonnegative solutions of nonautonomous reaction-diffusion problems. Proc Roy Soc Edinburgh, 1994, 124: 573-587
doi: 10.1017/S030821050002878X
|
| [14] |
Imbert C. A non-local regularization of first order Hamilton-Jacobi equations. J Differ Equ, 2005, 211: 218-246
doi: 10.1016/j.jde.2004.06.001
|
| [15] |
Iwabuchi T, Kawakami T. Existence of mild solutions for a Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces. J Math Pures Appl, 2017, 107(4): 464-489
doi: 10.1016/j.matpur.2016.07.007
|
| [16] |
Jarohs S, Weth T. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete Contin Dyn Syst, 2013, 34(6): 2581-2615
doi: 10.3934/dcds.2014.34.2581
|
| [17] |
Karch G, Woyczyński W A. Fractal Hamilton-Jacobi-KPZ equations. Trans Am Math Soc, 2008, 360(5): 2423-2442
doi: 10.1090/tran/2008-360-05
|
| [18] |
Kardar M, Parisi G, Zhang Y C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56(9): 889-892
pmid: 10033312
|
| [19] |
Krug J, Spohn H. Universality classes for deterministic surface growth. Phys Rev A, 1988, 38(8): 4271-4283
doi: 10.1103/PhysRevA.38.4271
|
| [20] |
Laurençot P, Souplet P. On the growth of mass for a viscous Hamilton-Jacobi equation. J Anal Math, 2003, 89(1): 367-383
doi: 10.1007/BF02893088
|
| [21] |
Li C M. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Comm Partial Differential Equations, 1991, 16(2/3): 491-526
doi: 10.1080/03605309108820766
|
| [22] |
Li C M. Some Qualitative Properties of Fully Nonlinear Elliptic and Parabolic Equations. New York: New York University, 1989
|
| [23] |
Li Y, Zhu M. Uniqueness theorems through the method of moving spheres. Duke math J, 1995, 80: 383-418
|
| [24] |
Liu Z. Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains. J Differential Equations, 2021, 270: 1043-1078
doi: 10.1016/j.jde.2020.09.001
|
| [25] |
Lu G Z, Zhu J Y. The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations. J Differential Equations, 2015, 258: 2054-2079
doi: 10.1016/j.jde.2014.11.022
|
| [26] |
Lu G Z, Zhu J Y. Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality. Calc Var Partial Differential Equations, 2011, 42: 563-577
doi: 10.1007/s00526-011-0398-7
|
| [27] |
Lü Y, Lü Z. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete Contin Dyn Syst, 2016, 36: 3791-3810
doi: 10.3934/dcdsa
|
| [28] |
Niu Y H. Monotonicity of solution for a class of nonlocal Monge-Ampere problem. Commun Pure Appl Anal, 2020, 19: 5269-5283
doi: 10.3934/cpaa.2020237
|
| [29] |
Poláčik P. Estimates of solutions and asymptotic symmetry for parabolic equations on bounded domains. Arch Ration Mech Anal, 2007, 183: 59-91
doi: 10.1007/s00205-006-0004-x
|
| [30] |
Poláčik P. Symmetry properties of positive solutions of parabolic equations on $\mathbb R^N$: I. Asymptotic symmetry for the Cauchy problem. Comm Partial Differential Equations, 2005, 30(11): 1567-1593
doi: 10.1080/03605300500299919
|
| [31] |
Woyczyński W A. Lévy processes in the physical sciences.in: Lévy Processes. Birkhäuser Boston, 2001, 2001: 241-266
|
| [32] |
Wu L Y, Chen W X. Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities. Sci Sin Math, 2022, 52(1): 1-22
doi: 10.1360/SCM-2019-0668
|
| [33] |
Wu L Y, Chen W X. The sliding methods for the fractional $p$-Laplacian. Adv Math, 2020, 361: Art 106933
|
| [34] |
Zhang B, Lü Z. Symmetry and nonexistence of solutions for a fully nonlinear nonlocal system. Pacific J Math, 2019, 299: 237-255
doi: 10.2140/pjm
|