| [1] |
Yau S T. Harmonic functions on complete Riemannian manifolds. Comm Pure Appl Math, 1975, 28(2): 201-228
doi: 10.1002/cpa.v28:2
|
| [2] |
Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm Pure Appl Math, 1975, 28(3): 333-354
doi: 10.1002/cpa.v28:3
|
| [3] |
Cheng S Y. Liouville theorem for harmonic maps. Proc Sympos Pure Math Amer Math Soc, 1980, 36: 147-151
|
| [4] |
Choi H I. On the Liouville theorem for harmonic maps. Proc Amer Math Soc, 1982, 85(1): 91-94
doi: 10.1090/proc/1982-085-01
|
| [5] |
Chen Q, Jost J, Qiu H. Existence and Liouville theorems for V-harmonic maps from complete manifolds. Ann Global Anal Geom, 2012, 42(4): 565-584
doi: 10.1007/s10455-012-9327-z
|
| [6] |
Chang S C, Kuo T J, Lin C. CR sub-Laplacian comparison and Liouville-type theorem in a complete noncompact Sasakian manifold. J Geom Anal, 2019, 29(2): 1676-1705
doi: 10.1007/s12220-018-0056-9
|
| [7] |
Dong Y, Lin H. Gradient estimate and Liouville theorems for p-harmonic maps. J Geom Anal, 2021, 31(8): 8318-8333
doi: 10.1007/s12220-020-00594-w
|
| [8] |
Gromoll D, Walschap G, Metric Foliations and Curvature. Basel: Birkhäuser Basel, 2009
|
| [9] |
Dragomir S, Tomassini G. Differential Geometry and Analysis on CR Manifolds. Boston: Birkhäuser Boston, 2006
|
| [10] |
Baudoin F, Grong E, Kuwada K. Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations. Calc Var Partial Dif, 2019, 58(4): Article 130
|
| [11] |
Agrachev A, Barilari D, Boscain U. A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge: Cambridge University Press, 2019
|
| [12] |
Chong T, Dong Y, Ren Y. Pseudo-harmonic maps from complete non-compact pseudo-Hermitian manifolds to regular balls. J Geom Anal, 2020, 30(4): 3512-3541
doi: 10.1007/s12220-019-00206-2
|
| [13] |
Li P, Wang J. Comparison theorem for Kähler manifolds and positivity of spectrum. J Differential Geom, 2005, 69(1): 043-074
|
| [14] |
Dong Y. Eells-Sampson type theorems for subelliptic harmonic maps from sub-Riemannian manifolds. J Geom Anal, 2021, 31(4): 3608-3655
doi: 10.1007/s12220-020-00408-z
|