数学物理学报 ›› 2025, Vol. 45 ›› Issue (6): 1977-1984.

• • 上一篇    

叶状次椭圆调和映射的梯度估计——献给李工宝教授 70 寿辰

任益斌1(), 陈钰莹1(), 种田2,*()   

  1. 1浙江师范大学数学科学学院 浙江金华 321004
    2上海第二工业大学数理与统计学院 上海 201209
  • 收稿日期:2025-07-20 修回日期:2025-09-26 出版日期:2025-12-26 发布日期:2025-11-18
  • 通讯作者: 种田 E-mail:allenryb@outlook.com;dyzl455@163.com;chongtian@sspu.edu.cn
  • 作者简介:任益斌,E-mail:allenryb@outlook.com
    陈钰莹,E-mail:dyzl455@163.com
  • 基金资助:
    国家自然科学基金(11223344)

Gradient Estimates for Foliated Subelliptic Harmonic Maps

Yibin Ren1(), Yuying Chen1(), Tian Chong2,*()   

  1. 1School of Mathematical Sciences, Zhejiang Normal University, Zhejiang Jinhua 321004
    2School of Mathematics, Physics and Statistics, Shanghai Polytechnic University, Shanghai 201209
  • Received:2025-07-20 Revised:2025-09-26 Online:2025-12-26 Published:2025-11-18
  • Contact: Tian Chong E-mail:allenryb@outlook.com;dyzl455@163.com;chongtian@sspu.edu.cn
  • Supported by:
    NSFC(11223344)

摘要:

该文推导了叶状黎曼流形上黎曼距离函数的 sub-Laplacian 估计, 并将该结果应用于建立从完备非紧叶状黎曼流形到 Cartan-Hadamard 流形叶状次椭圆调和映射的梯度估计和 Liouville 型定理.

关键词: 叶状黎曼流形, 次椭圆调和映射, 梯度估计, Liouville 定理.

Abstract:

This paper derives the sub-Laplacian estimates of the Riemannian distance function on foliated Riemannian manifolds, and applies this result to establish the gradient estimates and Liouville-type theorems for foliated subelliptic harmonic maps from complete non-compact foliated Riemannian manifolds to Cartan-Hadamard manifolds. }

Key words: Riemannian foliations, subelliptic harmonic maps, gradient estimates, Liouville theorems.

中图分类号: 

  • O186