Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (5): 1001-1013.
Previous Articles Next Articles
Lifei Zheng1(),Jie Guo1,Meihua Wu2,Xiaorui Wang1,Aying Wan2,*
Received:
2017-03-08
Online:
2018-10-26
Published:
2018-11-09
Contact:
Aying Wan
E-mail:zhenglifei@nwsuaf.edu.cn
Supported by:
CLC Number:
Lifei Zheng,Jie Guo,Meihua Wu,Xiaorui Wang,Aying Wan. The Research on a Class of the Predator-Prey-Mutualist System with Delays[J].Acta mathematica scientia,Series A, 2018, 38(5): 1001-1013.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 丁岩钦. 昆虫种群数学生态学原理与应用. 北京: 科学出版社, 1980 |
Ding Yanqin . Mathematical Ecology Principles and Applications of Insect Populations. Beijing: Science Press, 1980 | |
2 | 吴春光.一类捕食者-食饵种群动力学模型及数值模拟[D].北京:中央人民大学, 2009 |
Wu Chunguang. A Class of Predator-Prey Dynamic Models and Numerical Simulation[D]. Beijing: Central People's University, 2009 | |
3 |
张天然. 随机配对种群的两性模型的动力学性态. 生物数学学报, 2008, 23 (4): 577- 586
doi: 10.3969/j.issn.1001-9626.2008.04.001 |
Zhang Tianran . The dynamics of random mating two-sex population. Journal of Biomathematics, 2008, 23 (4): 577- 586
doi: 10.3969/j.issn.1001-9626.2008.04.001 |
|
4 | 张丽红.一类带年龄结构的扩散捕食系统的定性分析[D].兰州:兰州大学, 2009 |
Zhang Lihong. Qualitative Analysis of a Class of Predator-Predator System with Age Structure[D]. Lanzhou: Lanzhou University, 2009 | |
5 |
Rai B , Krawcewicz W . Hopf bifurcation in symmetric configuration of predator-prey mutualiststems. Nonlinear Analysis, 2009, 71: 4279- 4296
doi: 10.1016/j.na.2009.02.127 |
6 |
Tian C , Ling Z , Lin Z . Turing pattern formation in a predator-prey-mutualist system. Nonlinear Analasis Real Word Applications, 2011, 12 (6): 3224- 3237
doi: 10.1016/j.nonrwa.2011.05.022 |
7 | Yang Liya , Xie Xiangdong , Chen Fengde . Dynamic behaviors of a discrete periodic predator-prey-mutualist system. Discrete Dynamics in Nature and Society, 2015 |
8 |
Yang Liya , Xie Xiangdong , Chen Fengde , et al. Premanence of the periodic predator-prey-mutualist system. Advances in Difference Equations, 2015
doi: 10.1186/s13662-015-0654-9 |
9 | Hale J K . Theory of Functional Differential Equations. New York:Spring-Verlag, 1977 |
10 | 王顺庆, 王万雄, 等. 数学生态学稳定性理论与方法. 北京: 科学出版社, 2004 |
Wang Shunqing , Wang Wanxiong , et al. Theories and Methods of Mathematical Ecology Stability. Beijing: Science Press, 2004 | |
11 | 王高雄, 周之铭, 等. 常微分方程. 北京: 高等教育出版社, 1983 |
Wang Gaoxiong , Zhou Zhiming , et al. Ordinary Differential Equations. Beijing: Higher Education Press, 1983 | |
12 |
Cai Liming , Song Xinyu . Permanence and stability of a predator-prey system with stage structure for predator. Journal of Computation and Applied Mathematics, 2007, 201: 356- 366
doi: 10.1016/j.cam.2005.12.035 |
13 | 郑立飞, 赵惠燕, 吴月宁. 带时滞的食蚜蝇-蚜虫年龄结构的捕食模型. 系统科学与数学, 2013, 33 (9): 1033- 1044 |
Zheng Lifei , Zhao Huiyan , Wu Yuening . A Predator-prey model for the age structure of syrphidae and aphids with time delay. System Science and Mathematics, 2013, 33 (9): 1033- 1044 | |
14 | 舒畅, 汤建国. 昆虫实用数据手册. 北京: 中国农业出版社, 2009 |
Shu Chang , Tang Jianguo . Practical Data Manual for Insects. Beijing: China Agriculture Press, 2009 |
[1] | Bai Jinyan, Chai Shugen. Stabilization of Degenerate Wave Equations with Delayed Boundary Feedback [J]. Acta mathematica scientia,Series A, 2024, 44(1): 133-139. |
[2] | Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788. |
[3] | Kang Xiaodong, Fan Hongxia. Approximate Controllability for a Class of Second-Order Evolution Equations with Instantaneous Impulse [J]. Acta mathematica scientia,Series A, 2023, 43(2): 421-432. |
[4] | Yage Tong,Kaisu Wu. Spectral Analysis of the Main Operator of Rotenberg Equation with Time Delay Under Nonsmooth Boundary Conditions [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1320-1331. |
[5] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[6] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[7] | Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay [J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576. |
[8] | Jian Liu,Zhixin Zhang,Wei Jiang. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1053-1060. |
[9] | Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(2): 358-371. |
[10] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[11] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[12] | JIANG Yu, MEI Li-Quan, SONG Xin-Yu, TIAN Wei-Jun, DING Xue-Mei. Analysis of an Impulsive Epidemic Model with Time Delays and Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2012, 32(4): 670-684. |
[13] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[14] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[15] |
Gao Shujing ;Chen Lansun.
ermanence and Global Stability for Single-species Model with Three Life Stages and Time Delay |
|