Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 674-688.
Previous Articles Next Articles
Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei*()
Received:
2018-03-13
Online:
2019-06-26
Published:
2019-06-27
Contact:
Chunjin Wei
E-mail:chunjinwei92@163.com
Supported by:
CLC Number:
Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment[J].Acta mathematica scientia,Series A, 2019, 39(3): 674-688.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Zhao Y , Yuan S L , Zhang Q M . The effect of Lévy noise on the survival of a stochastic competitive model in an impulsive polluted environment. Appl Math Model, 2016, 40: 7583- 7600
doi: 10.1016/j.apm.2016.01.056 |
2 |
Wang X H , Jia J W . Dynamic of a delayed predator-prey model with birth pulse and impulsive harvesting in a polluted environment. Physica A, 2015, 422: 1- 15
doi: 10.1016/j.physa.2014.12.003 |
3 |
Wei F Y , Chen L H . Psychological effect on single-species population models in a polluted environment. Math Biosc, 2017, 290: 22- 30
doi: 10.1016/j.mbs.2017.05.011 |
4 |
Zhao Y , Yuan S L . Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment. Physica A, 2017, 477: 20- 33
doi: 10.1016/j.physa.2017.02.019 |
5 |
He X , Shan M J , Liu M . Persistence and extinction of an n-species mutualism model with random perturbations in a polluted environment. Physica A, 2018, 491: 313- 324
doi: 10.1016/j.physa.2017.08.083 |
6 |
Jiang D Q , Zhang Q M , Tasawar H , Ahmed A . Periodic solution for a stochastic non-autonomous competitive Lotka-Volterra model in a polluted environment. Physica A, 2017, 471: 276- 287
doi: 10.1016/j.physa.2016.12.008 |
7 | Zhao D L , Yuan S L . Dynamics of the stochastic Leslie-Gower predator-prey system with randomized intrinsic growth rate. Physica A, 2016, 461 (1): 419- 428 |
8 | Jiang D Q , Zuo W J , Tasawar H , Ahmed A . Stationary distribution and periodic solutions for stochastic Holling-Leslie predator-prey systems. Physica A, 2016, 460 (15): 16- 28 |
9 |
Liu Q , Zu L , Jiang D Q . Dynamics of stochastic predator-prey models with Holling Ⅱ functional response. Commu Nonl Sci Numer Simulat, 2016, 37: 62- 76
doi: 10.1016/j.cnsns.2016.01.005 |
10 |
Guo W J , Cai Y L , Zhang Q M , Wang W M . Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage. Physica A, 2018, 492: 2220- 2236
doi: 10.1016/j.physa.2017.11.137 |
11 |
Liu M , Wang K . Survival analysis of a stochastic cooperation system in a polluted environment. J Biol Syst, 2011, 19: 183- 204
doi: 10.1142/S0218339011003877 |
12 | 张树文, 蔡明夷. 具脉冲输入毒素的单种群随机干扰模型. 应用数学学报, 2014, 37 (5): 797- 804 |
Zhang S W , Cai M Y . A single population model in a polluted environment with pulse toxicant input and random perturbations. Acta Math Appl Sinica, 2014, 37 (5): 797- 804 | |
13 |
Rehim M , Sun L L , Abdurahman X , Teng Z D . Study of chemostat model with impulsive input and nutrient recycling in a polluted environment. Commun Nonl Sci Numer Simulat, 2011, 16: 2563- 2574
doi: 10.1016/j.cnsns.2010.09.030 |
14 | 王克. 随机生物数学模型. 北京: 科学出版社, 2010 |
Wang K . Random Biological Mathematical Model. Beijing: Science Press, 2010 | |
15 |
Jiang D Q , Shi N Z , Li X Y . Global stability and stochastic permanence of nonautonomous lodistic equation with random perturbation. Math Anal Appl, 2008, 340: 588- 597
doi: 10.1016/j.jmaa.2007.08.014 |
16 |
Liu B , Teng Z D , Li X Y . Qualitative analysis of a stochastic ratio-dependent predator-prey system. J Comput Appl Math, 2011, 235: 1326- 1341
doi: 10.1016/j.cam.2010.08.021 |
17 |
Zuo W J , Jiang D Q . Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting. Commun Nonl Sci Numer Simulat, 2016, 36: 65- 68
doi: 10.1016/j.cnsns.2015.11.014 |
[1] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[2] | Jiale Nie,Jinghu Yu. Environmental Detection and Response to a Kind of Dynamic Optimization Problem Subjected to Random Disturbance [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1560-1574. |
[3] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[4] | Xin Wu,Rong Yuan,Zhaohai Ma. Analysis on Critical Waves and Non-Critical Waves for Holling-Tanner Predator-Prey System with Nonlocal Diffusion [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1705-1717. |
[5] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[6] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[7] | HU Guang-Ping, LI Xiao-Ling. Stationary Patterns of a Leslie-Gower Type Three Species Model with Cross-Diffusions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 16-27. |
[8] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[9] | SHI Hong-Bo, LI Wan-Tong, LIN Guo. Qualitative Analysis of a Modified Leslie-Gower Predator-Prey System with Diffusion [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1403-1415. |
[10] | QIN Fa-Jin. Multiple Periodic Solutions for a Delayed Stage-Structure Predator-Prey Systems |with Harvesting Rate and Diffusion [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1613-1622. |
[11] | Li Junping; Li Min. Random Non-autonomous Logistic Models [J]. Acta mathematica scientia,Series A, 2008, 28(5): 863-869. |
[12] |
Liang Zhiqing;Chen Lansun.
Stability of Periodic Solution for a Discrete Leslie Predator-prey System [J]. Acta mathematica scientia,Series A, 2006, 26(4): 634-640. |
[13] | Teng Zhidong, Chen Lansun. Necessary and Sufficient Conditions for Existence of Positive Periodic Solutions of Periodic Predator-Prey Systems [J]. Acta mathematica scientia,Series A, 1998, 18(4): 402-406. |
|