Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (1): 146-155.
Previous Articles Next Articles
Received:
2018-11-07
Online:
2020-02-26
Published:
2020-04-08
Contact:
Bin Guo
E-mail:bguo@jlu.edu.cn
Supported by:
CLC Number:
Menglan Liao,Bin Guo. Asymptotic Stability of Weak Solutions to Wave Equation with Variable Exponents and Strong Damping Term[J].Acta mathematica scientia,Series A, 2020, 40(1): 146-155.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Antontsev S, Díaz J, Shmarev S. Energy Methods for free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Boston: Bikhäuser, 2002 |
2 |
Antontsev S , Rodrigues J . On stationary thermo-rheological viscous flows. Ann Univ Ferrara Sez VⅡ Sci Mat, 2006, 52, 19- 36
doi: 10.1007/s11565-006-0002-9 |
3 | Antontsev S . Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up. Differ Equ Appl, 2011, 3, 503- 525 |
4 |
Antontsev S . Wave equation with $p(x, t)$-Laplacian and damping: blow-up of solutions. C R Mecanique, 2011, 339, 751- 755
doi: 10.1016/j.crme.2011.09.001 |
5 |
Fan X , Zhao D . On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$. J Math Anal Appl, 2001, 263, 424- 446
doi: 10.1006/jmaa.2000.7617 |
6 | Guo B , Gao W . Existence and asymptotic behavior of solutions for nonlinear parabolic equations with variable exponent of nonlinearity. Acta Math Sci, 2012, 32B (3): 1053- 1062 |
7 |
Guo B , Gao W . Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian operator and positive initial energy. C R Mecanique, 2014, 342, 513- 519
doi: 10.1016/j.crme.2014.06.001 |
8 |
Guo B . An inverse Hölder inequality and its application in lower bound estimates for blow-up time. C R Mecanique, 2017, 345, 370- 377
doi: 10.1016/j.crme.2017.04.002 |
9 |
Haehnle J , Prohl A . Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions. Math Comp, 2010, 79, 189- 208
doi: 10.1090/S0025-5718-09-02231-5 |
10 |
Li F , Liu F . Blow-up of solutions to a quasilinear wave equation for high initial energy. C R Mecanique, 2018, 346, 402- 407
doi: 10.1016/j.crme.2018.03.002 |
11 |
Martinez P . A new method to obtain decay rate estimates for dissipative systems. ESAIM: Control Optim Calc Var, 1999, 4, 419- 444
doi: 10.1051/cocv:1999116 |
12 |
Messaoudi S , et al. Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput Math Appl, 2018, 76, 1863- 1875
doi: 10.1016/j.camwa.2018.07.035 |
13 | Pucci P, Serrin J. Asympptotic Stablility for Nonlinear Parabolic Systems//Antontsev S N, Diaz J I, Shmarev S I. Energy Methods in Continuum Mechanics. Dordrecht: Kluwer Acad Publ, 1996: 66-74 |
14 |
Pinasco J . Blow-up for parabolic and hyperbolic problems with variable exponents. Nonlinear Anal, 2009, 71, 1094- 1099
doi: 10.1016/j.na.2008.11.030 |
15 | R${\rm{\dot u}}$žička M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000 |
16 |
Rajagopal K , R${\rm{\dot u}}$žička M . Mathematical modeling of electro-rheological fluids. Cont Mech Therm, 2001, 13, 59- 78
doi: 10.1007/s001610100034 |
[1] | Lv Dongting. Globally Asymptotic Stability of 2-Species Reaction-Diffusion Systems of Spatially Inhomogeneous Models [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1171-1183. |
[2] | Xu Fei, Zhang Yong. Uniqueness and Asymptotic Stability of Time-Periodic Solutions for the Fractional Burgers Equation [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1710-1722. |
[3] | Li Jize,Qiu Jixiu,Zhou Yonghui. Anticipative Nonlinear Filtering Equations Affected by Observation Noises and Stability of Linear Filtering [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1244-1254. |
[4] | Hongxing Wu,Dengbin Yuan,Shenghua Wang. Asymptotic Stability Analysis of Solutions to Transport Equations in Structured Bacterial Population Growth [J]. Acta mathematica scientia,Series A, 2022, 42(3): 807-817. |
[5] | Xiaojing Cai,Yanjie Zhou. Asymptotic Behavior for the Damped Boussinesq [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1415-1427. |
[6] | Zaiyong Feng,Ning Chen,Yongpeng Tai,Zhengrong Xiang. On the Observer Design for Fractional Singular Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1529-1544. |
[7] | Qianqian Xie,Xiaoping Zhai,Boqing Dong. Optimal Decay for the N-Dimensional Incompressible Oldroyd-B Model Without Damping Mechanism [J]. Acta mathematica scientia,Series A, 2021, 41(3): 762-769. |
[8] | Yuanfei Li,Zhiqing Li. Phragmén-Lindelöf Type Results for Transient Heat Conduction Equation with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1248-1258. |
[9] | Zhiyu Zhang,Feifei Song,Tongxing Li,Yuanhong Yu. Oscillation Criteria of Second Order Nonlinear Neutral Emden-Fowler Differential Equations with Damping [J]. Acta mathematica scientia,Series A, 2020, 40(4): 934-946. |
[10] | Gengen Zhang,Wansheng Wang,Aiguo Xiao. Asymptotic Estimation of the Trapezoidal Method for a Class of Neutral Differential Equation with Variable Delay [J]. Acta mathematica scientia,Series A, 2019, 39(3): 560-569. |
[11] | Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2019, 39(3): 570-581. |
[12] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[13] | Zhong Yue, Yuan Qian. The Asymptotic Stability of the Zero Solution for A Nonlinear Volterra Equation [J]. Acta mathematica scientia,Series A, 2015, 35(5): 878-883. |
[14] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[15] | ZHU Xu-Sheng, LI Fang-E. The Global Solutions of the Compressible Euler Equations With Nonlinear Damping in 3-Dimensions [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1111-1122. |
|