Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1192-1203.
Previous Articles Next Articles
Limeng Wu1(),Mingkang Ni2,Suhong Li1,Haibo Lu3
Received:
2019-09-27
Online:
2020-10-26
Published:
2020-11-04
Supported by:
CLC Number:
Limeng Wu,Mingkang Ni,Suhong Li,Haibo Lu. Asymptotic Solution of Singularly Perturbed Boundary Value Problem with Integral Boundary Condition[J].Acta mathematica scientia,Series A, 2020, 40(5): 1192-1203.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 倪明康, 林武忠. 奇异摄动问题中的渐近理论. 北京:高等教育出版社, 2009 |
Ni M K , Lin W Z . Asymptotic Theory of Singularly Perturbed Problem. Beijing:Higher Education Press, 2009 | |
2 | Mo J Q , Wang H , Lin W T . The solvability for a class of singularly perturbed quasi-linear differential system. Acta Mathematica Scientia, 2008, 28B (3): 495- 500 |
3 | Mo J Q , Lin W T , Wang H . A class of homotopic solving method for ENSO model. Acta Mathematica Scientia, 2009, 29B (1): 101- 110 |
4 |
Du Z J , Kong L J . Asymptotic solutions of singularly perturbed second-order differential equations and application to multi-point boundary value problems. Applied Mathematics Letters, 2010, 23, 980- 983
doi: 10.1016/j.aml.2010.04.021 |
5 | 刘树德, 孙建山, 谢元静. 一类奇摄动拟线性边值问题的激波解. 数学物理学报, 2012, 32A (2): 312- 319 |
Liu S D , Sun J S , Xie Y J . Shock solutions for some singularly perturbed quasilinear boundary value problems. Acta Mathematica Scientia, 2012, 32A (2): 312- 319 | |
6 | 刘帅, 沈建和, 周哲彦. 二阶半线性奇摄动边值问题的渐近解. 数学物理学报, 2014, 34A (5): 1104- 1110 |
Liu S , Shen J H , Zhou Z Y . Asymptotic solution for second-order semilinear singularly perturbed boundary value problems. Acta Mathematica Scientia, 2014, 34A (5): 1104- 1110 | |
7 | Ionkin N I . Solution of a boundary value problem in heat conduction theory with nonlocal boundary conditions. Differential Equations, 1977, 13, 294- 304 |
8 |
Nicoud F , Schonfeld T . Integral boundary conditions for unsteady biomedical CFD applications. Internat J Numer Methods Fluids, 2002, 40, 457- 465
doi: 10.1002/fld.299 |
9 |
Amiraliyev G M , Cakir M . Numerical solution of the singularly perturbed problem with nonlocal boundary condition. Applied Mathematics and Mechanics, 2002, 23 (7): 755- 764
doi: 10.1007/BF02456971 |
10 |
Cakir M , Amiraliyev G M . A finite difference method for the singularly perturbed problem with nonlocal boundary condition. Applied Mathematics and Computation, 2005, 160, 539- 549
doi: 10.1016/j.amc.2003.11.035 |
11 | Xie F , Jin Z Y , Ni M K . On the step-type contrast structure of second-order semilinear differential equation with integral boundary conditions. Electronic Journal of Qualitative Theory of Differential Equations, 2010, 1, 1- 14 |
12 | 谢峰, 张莲. 具有积分边界条件的非线性二阶奇摄动问题. 华东师范大学学报, 2010, 1, 1- 5 |
Xie F , Zhang L . Nonlinear second order singularly perturbed problem with integral boundary condition. Journal of East China Normal University, 2010, 1, 1- 5 | |
13 |
Tin S K , Koppell N , Jones C K R T . Invariant manifolds and singularly perturbed boundary value problems. SIAM J Numer Anal, 1994, 31 (6): 1558- 1576
doi: 10.1137/0731081 |
14 |
Wu L M , Ni M K , Lu H B . Internal layer solution of singularly perturbed optimal control problem with integral boundary condition. Qualitative Theory of Dynamical Systems, 2018, 17, 49- 66
doi: 10.1007/s12346-017-0261-0 |
15 | 陆海波, 倪明康, 武利猛. 奇异奇摄动系统的几何方法. 华东师范大学学报, 2013, 3, 140- 148 |
Lu H B , Ni M K , Wu L M . Geometric singular perturbation approach to singular singularly perturbed systems. Journal of East China Normal University, 2013, 3, 140- 148 | |
16 |
Lin X B . Shadowing lemma and singularly perturbed boundary value problems. SIAM Journal on Applied Mathematics, 1989, 49, 26- 54
doi: 10.1137/0149002 |
17 |
Li X J , Zhang Q . Existence of solution for a p-Laplacian multi-point boundary value problem at resonance. Qualitative Theory of Dynamical Systems, 2018, 17, 143- 154
doi: 10.1007/s12346-017-0259-7 |
18 |
Du Z J , Li J , Li X W . The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J Funct Anal, 2018, 275, 988- 1007
doi: 10.1016/j.jfa.2018.05.005 |
19 |
Lin X J , Liu J , Wang C . The existence and asymptotic estimates of solutions for a third-order nonlinear singularly perturbed boundary value problem. Qualitative Theory of Dynamical Systems, 2019, 18, 687- 710
doi: 10.1007/s12346-018-0307-y |
20 |
Wang C , Zhang X . Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type Ⅲ. J Differential Equations, 2019, 267, 3397- 3441
doi: 10.1016/j.jde.2019.04.008 |
21 |
Lin X J , Liu J , Wang C . The existence, uniqueness and asymptotic estimates of solutions for third-order full nonlinear singularly perturbed vector boundary value problems. Boundary Value Problems, 2020, 2020, 1- 17
doi: 10.1186/s13661-019-01311-5 |
[1] | Zheng Yanping, Shen Jianhe. Traveling Fronts in a Social Tension-Outbursts Multi-Scale Reaction-Diffusion Equation with Allee Effect [J]. Acta mathematica scientia,Series A, 2025, 45(3): 776-789. |
[2] | Fu Yuechen, Ni Mingkang. The Inner Layer of a Class of Singularly Perturbed High-Order Equations with Discontinuous Right-Hand Side [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1153-1166. |
[3] | Li Min, Pu Xueke. Long-Wavelength Limit for the Two-Fluid Euler-Poisson Equation [J]. Acta mathematica scientia,Series A, 2023, 43(2): 399-420. |
[4] | Hao Zhang,Na Wang. A Class of Weakly Nonlinear Critical Singularly Perturbed Integral Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1060-1073. |
[5] | Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Fractional Generalized Disturbed Thermal Wave Equation [J]. Acta mathematica scientia,Series A, 2020, 40(2): 452-459. |
[6] | Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Asymptotic Path Curve for Fermi Gases Optical Lattices Model [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1555-1562. |
[7] | Huaxiong Chen,Yanyan Wang,Mingkang Ni. The Contrast Structure for the Singularly Perturbed Problem with Slow-Fast Layers and Discontinuous Righthand Side [J]. Acta mathematica scientia,Series A, 2019, 39(4): 865-874. |
[8] | Xianglin Han,Weigang Wang,Jiaqi Mo. Generalized Solution to the Singular Perturbation Problem for a Class of Nonlinear Differential-Integral Time Delay Reaction Diffusion System [J]. Acta mathematica scientia,Series A, 2019, 39(2): 297-306. |
[9] | Liao Shupeng, Shen Jianhe. One-Pulse Travelling Front Solutions of a sine-Gordon Equation with Slowly Varying Parameters [J]. Acta mathematica scientia,Series A, 2018, 38(4): 810-822. |
[10] | Ouyang Cheng, Mo Jiaqi. Study of Nonlinear Duffing Disturbed Oscillator for Resonance Mechanism [J]. Acta mathematica scientia,Series A, 2018, 38(1): 190-196. |
[11] | LIU Shuai, CHEN Jian-He, ZHOU Zhe-Yan. Asymptotic Solution for Second-order Semilinear Singularly Perturbed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1104-1110. |
[12] | LIN Su-Rong. The Singular Perturbation of Boundary Value Problem on Infinite Interval for a Class Nonlinear Vector Differential Equation [J]. Acta mathematica scientia,Series A, 2014, 34(3): 727-737. |
[13] | LIU Shuai, ZHOU Zhe-Yan, SHEN Jian-He. Asymptotic Behavior of Solutions for Second-Order Semilinear Singularly Perturbed Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2014, 34(2): 437-444. |
[14] | WU Li-Meng, NI Ming-Kang, LIU Hai-Bo. Internal Transition Layer Solution of Singularly Perturbed Optimal Control Problem [J]. Acta mathematica scientia,Series A, 2013, 33(2): 206-215. |
[15] | LIN Su-Rong. Singular Perturbation of a Class of Third Order |Partial Differential Equations under Limit Equation to be Mixed Type [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1579-1585. |
|