Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (1): 237-244.
Previous Articles Next Articles
Received:
2019-12-28
Online:
2021-02-26
Published:
2021-01-29
Supported by:
CLC Number:
Shenglian Wan. A Double Projection Algorithm for Solving Variational Inequalities[J].Acta mathematica scientia,Series A, 2021, 41(1): 237-244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
算法3.1.1 | 算法3.1.2 | 算法2.2 | |
n | iter(nf) time | iter(nf) time | iter(nf) time |
n = 10 | 14(64) 0.561604 | 14(65) 0.546004 | 22(87) 0.748805 |
n = 50 | 17(79) 0.639604 | 17(83) 0.608404 | 20(85) 0.670804 |
n = 100 | 19(89) 1.48201 | 17(81) 1.37281 | 21(85) 1.62241 |
n = 200 | 18(86) 2.35562 | 18(85) 2.46482 | 22(89) 2.13721 |
n = 500 | 19(87) 9.21966 | 18(87) 9.15726 | 23(93) 8.04965 |
"
算法3.1.1 | 算法3.1.2 | 算法2.2 | |
n | iter(nf) time | iter(nf) time | iter(nf) time |
n = 10 | 17(76) 0.421203 | 16(72) 0.499203 | 18(69) 0.499203 |
n = 50 | 19(90) 0.483603 | 19(95) 0.483603 | 20(78) 0.624004 |
n = 100 | 20(95) 1.201210 | 19(93) 1.232410 | 21(82) 1.23241 |
n = 200 | 20(96) 2.090410 | 20(98) 1.996810 | 21(89) 2.12161 |
n = 500 | 20(95) 9.762660 | 20(95) 10.43650 | 21(98) 6.70804 |
1 |
Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps. J Optim Theory Appl, 1976, 18 (4): 445- 454
doi: 10.1007/BF00932654 |
2 |
Dafermos S . Traffic equilibrium and variational inequalities. Transportation Science, 1980, 14 (1): 42- 54
doi: 10.1287/trsc.14.1.42 |
3 | Harker P T , Pang J S . Finite-dimensional variational inequality and nonlinear complementarity problems:A survey of theory, algorithms and applications. Mathe Program, 1990, 48 (2): 161- 220 |
4 |
Popov L D . A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes, 1980, 28 (5): 845- 848
doi: 10.1007/BF01141092 |
5 |
Malitsky Y V , Semenov V V . An extragradient algorithm for monotone variational inequalities. Cybernetics and Systems Analysis, 2014, 50 (2): 271- 277
doi: 10.1007/s10559-014-9614-8 |
6 |
He B S . A class of projection and contraction methods for monotone variational inequalities. Appl Math Optim, 1997, 35 (1): 69- 76
doi: 10.1007/s002459900037 |
7 |
Yan X H , Han D R , Sun W Y . A self-adaptive projection method with improved step-size for solving variational inequalities. Comput Math Appl, 2008, 55 (4): 819- 832
doi: 10.1016/j.camwa.2007.05.008 |
8 |
Bnouhachem A , Xu M H , Fu X L , et al. Modified extragradient methods for solving variational inequalities. Comput Math Appl, 2009, 57 (2): 230- 239
doi: 10.1016/j.camwa.2008.10.065 |
9 | Xiu N H , Zhang J Z . Some recent advances in projection-type methods for variational inequalities. J Comput Appl Math, 2003, 152 (1/2): 559- 585 |
10 | Korpelevich G M . An extragradient method for finding saddle points and for other problems. Matecon, 1976, 17: 747- 765 |
11 |
Solodov M V , Svaiter B F . A new projection method for variational inequality problems. SIAM J Control Optim, 1999, 37 (3): 765- 776
doi: 10.1137/S0363012997317475 |
12 |
He Y R . A new double projection algorithm for variational inequalities. J Comput Appl Math, 2006, 185 (1): 166- 173
doi: 10.1016/j.cam.2005.01.031 |
13 |
叶明露. 变分不等式的一类二次投影算法. 应用数学学报, 2012, 35 (3): 529- 535
doi: 10.3969/j.issn.0254-3079.2012.03.012 |
Ye M L . The framework of a double projection algorithm for variational inequalities. Acta Math Appl Sinica, 2012, 35 (3): 529- 535
doi: 10.3969/j.issn.0254-3079.2012.03.012 |
|
14 |
Wang Y J , Xiu N H , Wang C Y . Unified framework of extragradient-type methods for pseudomonotone variational inequalities. J Optim Theory Appl, 2001, 111 (3): 641- 656
doi: 10.1023/A:1012606212823 |
15 | Polyak B T. Introduction to Optimization. New York: Optimization Software Inc, 1987(Translated from Russian, with a foreword by Dimitri P. Bertsekas) |
16 | Sun D . A new step-size skill for solving a class of nonlinear projection equations. J Comput Math, 1995, (4): 357- 368 |
[1] | Wang Qiongqiong, Tang Jia. Hessenberg-Type Algorithm for PageRank Acceleration Based on Chebyshev Polynomials [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1291-1300. |
[2] | Yu Dongmei, Liu Dayi. The Levenberg-Marquardt Algorithm for Solving the Generalized Complementarity Problems [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1311-1326. |
[3] | Wang Wujing, Zhu Meiling, Zhang Yongle. A New Projection Algorithm for Solving Quasimonotone Variational Inequality Problems and Fixed Point Problems [J]. Acta mathematica scientia,Series A, 2025, 45(1): 236-255. |
[4] | Ma Changfeng, Xie Yajun, Bu Fan. The Tensor Scheme BCGSTAB Algorithm for Solving Stein Tensor Equations [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1652-1664. |
[5] | Wang Junjie. Symplectic Difference Scheme for the Space Fractional KGS Equations [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1319-1334. |
[6] | Yu Ting, Dong Ying. The Convergence Rate of the Fast Signal Diffusion Limit for a Three-Dimensional Keller-Segel-Stokes System [J]. Acta mathematica scientia,Series A, 2024, 44(4): 925-945. |
[7] | Ma Xiaojun, Chen Fu, Jia Zhifu. Research on a Strong Convergence Theorem for Proximal Split Feasibility Problems with Non-Lipschitz Stepsizes [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1052-1065. |
[8] | Jian Jinbao, Dai Yu, Yin Jianghua. An Inertial Conjugate Gradient Projection Method for the Split Feasibility Problem [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1066-1079. |
[9] | Nie Jialin, Long Xianjun. A Golden Ratio Primal-Dual Algorithm for a Class of Nonsmooth Saddle Point Problems [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1080-1091. |
[10] | Zhang Xiao, Zhang Hongwu. Fractional Tikhonov Regularization Method for an Inverse Boundary Value Problem of the Fractional Elliptic Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 978-993. |
[11] |
Zhang Jie, Sun Yiming, Liu Yongping.
EC-tractability of Multivariate |
[12] | Liu Hua, Basma Al-Shutnawi. On Convergence Sets of Power Series with Holomorphic Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(3): 563-574. |
[13] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
[14] | Liu Jinghua, Li Lin. Homeomorphic Solutions of Iterative Functional Equations [J]. Acta mathematica scientia,Series A, 2024, 44(2): 313-325. |
[15] | Cai Yu, Zhou Guanghui. Global Convergence of a WYL Type Spectral Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2024, 44(1): 173-184. |
|