Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (4): 1088-1096.
Previous Articles Next Articles
Dongxia Fan(),Dongxia Zhao*(
),Na Shi(
),Tingting Wang(
)
Received:
2020-09-24
Online:
2021-08-26
Published:
2021-08-09
Contact:
Dongxia Zhao
E-mail:119256724@qq.com;zhaodongxia6@sina.com;1835446397@qq.com;807790440@qq.com
Supported by:
CLC Number:
Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation[J].Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Coron J M, D'Andrea-Novel B, Bastia G. A Lyapunov approach to control irrigation canals modeled by saint-venant equations. European Control Conference, 1999. DOI: 10.23919/ECC.1999.7099816 |
2 |
Besancon G , Georges D , Benayache Z . Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks Heterogeneous Media, 2009, 4 (2): 211- 221
doi: 10.3934/nhm.2009.4.211 |
3 | Cen L H , Xi Y G . Stability of boundary feedback control based on weighted Lyapunov function in networks of open channels. Acta Automatica Sinica, 2009, 35 (1): 97- 102 |
4 |
Cen L H , Xi Y G . Lyapunov-based boundary feedback control in multi-reach canals. Science in China Series F: Information Sciences, 2009, 52 (7): 1157- 1164
doi: 10.1007/s11432-009-0108-7 |
5 | Zhao D X, Wang J M. On the stabilization of an irrigation channel with a cascade of 2 pools: A linearized case. Asian Control Conference, 2013. DOI: 10.1109/ASCC.2013.6606160 |
6 | 李占松, 师冰雪. 一个简洁的圣维南方程组推导过程. 高教学刊, 2016, 18, 97- 98 |
Li Z , Shi B . A simple derivation of Saint Venant's equations. Journal of Higher Education, 2016, 18, 97- 98 | |
7 |
Litrico X , Georges D . Robust continuous-time and discrete-time flow control of a dam-river system: (Ⅰ) Modelling. Applied Mathematical Modelling, 1999, 23 (11): 809- 827
doi: 10.1016/S0307-904X(99)00014-1 |
8 |
Chentouf B , Smaoui N . Stability analysis and numerical simulations of a one dimensional open channel hydraulic system. Applied Mathematics and Computation, 2018, 321, 498- 511
doi: 10.1016/j.amc.2017.10.058 |
9 |
Chentouf B , Smaoui N . Time-delayed feedback control of a hydraulic model governed by a diffusive wave system. Complexity, 2020, 1- 15
doi: 10.1155/2020/4986026 |
10 | Atay F M . Balancing the inverted pendulum using position feedback. Applied Mathematics Letters, 1999, 12, 51- 56 |
11 |
Wang J M , Lv X W , Zhao D X . Exponential stability and spectral analysis of the pendulum system under position and delayed position feedbacks. International Journal of Control, 2011, 84 (5): 904- 915
doi: 10.1080/00207179.2011.582886 |
12 |
Zhao D X , Wang J M . Exponential stability and spectral analysis of the inverted pendulum system under two delayed position feedbacks. Journal of Dynamical and Control Systems, 2012, 18 (2): 269- 295
doi: 10.1007/s10883-012-9143-6 |
[1] | Wu Wenbin, Ren Xue, Zhang Ran. Traveling Waves for a Discrete Diffusive Vaccination Model with Delay [J]. Acta mathematica scientia,Series A, 2025, 45(3): 858-874. |
[2] | Zhang Chunguo, Sun Baonan, Fu Yuzhi, Yu Xin. Stabilization of 2-D Mindlin Timoshenko Plate Systems with Local Damping [J]. Acta mathematica scientia,Series A, 2024, 44(4): 946-959. |
[3] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
[4] | Pang Yuting, Zhao Dongxia. The PDP Feedback Control and Exponential Stabilization of a Star-Shaped Open Channels Network System [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1803-1813. |
[5] |
Pang Yuting,Zhao Dongxia,Zhao Xin,Gao Caixia.
The PDP Boundary Control for a Class of 2 |
[6] | He Xuyang,Mao Mingzhi,Zhang Tengfei. Existence and Stability of a Class of Impulsive Neutral Stochastic Functional Differential Equations with Poisson Jump [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1221-1243. |
[7] | Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation [J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701. |
[8] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[9] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[10] | Xingshou Huang,Ricai Luo,Wusheng Wang. Stability Analysis for a Class Neural Network with Proportional Delay Based on the Gronwall Integral Inequality [J]. Acta mathematica scientia,Series A, 2020, 40(3): 824-832. |
[11] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[12] | Xinzhe Zhang,Guofeng He,Gang Huang. Dynamical Properties of a Delayed Epidemic Model with Vaccination and Saturation Incidence [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1247-1259. |
[13] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[14] | Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting [J]. Acta mathematica scientia,Series A, 2019, 39(4): 785-796. |
[15] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
|