Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1465-1491.
Previous Articles Next Articles
Chunguo Zhang*(),Yuzhi Fu,Yubiao Liu
Received:
2020-02-21
Online:
2021-10-26
Published:
2021-10-08
Contact:
Chunguo Zhang
E-mail:cgzhang@hdu.edu.cn
Supported by:
CLC Number:
Chunguo Zhang,Yuzhi Fu,Yubiao Liu. Stability and Optimality of 2-D Mindlin-Timoshenko Plate System[J].Acta mathematica scientia,Series A, 2021, 41(5): 1465-1491.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Sadek I , Sloss J M , Bruch J C J , Adali S . Optimal control of a Timoshenko beam by distributed force. Journal of Optimization Theory and Applications, 1986, 50 (3): 451- 461
doi: 10.1007/BF00938631 |
2 | Zelikin M I , Manita L A . Optimal control for a Timoshenko beam. C R Mecanique, 2006, 334 (4): 292- 297 |
3 |
Zhang C G , He Z R . Optimality conditions for a Timoshenko beam equation with periodic constraint. Z Angew Math Phys, 2014, 65, 315- 324
doi: 10.1007/s00033-013-0333-1 |
4 |
章春国, 刘宇标, 刘维维. Timoshenko梁的最优控制问题. 数学物理学报, 2018, 38A (3): 454- 466
doi: 10.3969/j.issn.1003-3998.2018.03.004 |
Zhang C G , Liu Y B , Liu W W . Boundary optimal control for the Timoshenko beam. Acta Math Sci, 2018, 38A (3): 454- 466
doi: 10.3969/j.issn.1003-3998.2018.03.004 |
|
5 |
Campelo A D S , Almeida J D S , Santos M L . Stability to the dissipative Reissner-Mindlin-Timoshenko acting on displacement equation. European Journal of Applied Mathematics, 2016, 27 (2): 157- 193
doi: 10.1017/S0956792515000467 |
6 |
Dalsen G V . Stabilization of a thermoelastic Mindlin-Timoshenko plate model revisited. Z Angew Math Phys, 2013, 64 (4): 1305- 1325
doi: 10.1007/s00033-012-0289-6 |
7 |
Dalsen G V . Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions. Z Angew Math Phys, 2015, 66 (1): 113- 128
doi: 10.1007/s00033-013-0391-4 |
8 | Lagnese J E . Boundary Stabilization of Thin Plates. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1989, |
9 | Rao B . Stabilization of elastic plates with dynamical boundary control. SIAM Journal on Control and Optimization, 2006, 36 (1): 148- 163 |
10 |
Rivera J E M , Oquendo H P . Asymptotic Behavior of a Mindlin-Timoshenko Plate with Viscoelastic Dissipation on the Boundary. Funkcialaj Ekvacioj, 2003, 46 (3): 363- 382
doi: 10.1619/fesi.46.363 |
11 |
Sare H . On the stability of Mindlin-Timoshenko plates. Quarterly of Applied Mathematics, 2009, 67 (2): 249- 263
doi: 10.1090/S0033-569X-09-01110-2 |
12 |
Dalsen G V . Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping. Z Angew Math Phys, 2015, 66 (4): 1751- 1776
doi: 10.1007/s00033-015-0507-0 |
13 | Nicaise S . Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control and Related Fields, 2013, 1 (3): 331- 352 |
14 |
Rivera J E M , Qin Y . Polynomial decay for the energy with an acoustic boundary condition. Applied Mathematics Letters, 2003, 16 (2): 249- 256
doi: 10.1016/S0893-9659(03)80039-3 |
15 | Avalos G , Toundykov D . Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate. Nonlinear Analysis Real World Applications, 2011, 12 (6): 2985- 3013 |
16 |
Pokojovy M . On stability of hyperbolic thermoelastic Reissner-Mindlin-Timoshenko plates. Mathematical Methods in the Applied Sciences, 2015, 38 (7): 1225- 1246
doi: 10.1002/mma.3140 |
17 |
Komornik V . Rapid boundary stabilization of linear distributed systems. SIAM Journal on Control and Optimization, 1997, 35 (5): 1591- 1613
doi: 10.1137/S0363012996301609 |
18 |
Azmi B , Kunisch K . On the stabilizability of the Burgers equation by receding Horizon control. SIAM Journal on Control and Optimization, 2016, 54 (3): 1378- 1405
doi: 10.1137/15M1030352 |
19 | Azmi B , Kunisch K . Receding horizon control for the stabilization of the wave equation. Discrete and Continuous Dynamical Systems, 2017, 38 (2): 449- 484 |
20 | Adams R A . Sobolev Spaces. New York: Acadamic Press, 1975 |
21 | Lions J L. 分布系统的精确能控性、摄动和镇定. 严金海, 黄英, 译. 北京: 高等教育出版社, 2012 |
Lions J L. Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués//Translated by Yan J H, Huang Y. Beijing: Higher Education Press, 2012 |
[1] | Chen Hongye, Fang Donghui, Wu Kexing. Optimality Conditions and Total Lagrange Dualities for Evenly Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1255-1267. |
[2] | Ran Bo,Sun Xiangkai,Guo Xiaole. On Robust Optimal Solutions for a Class of Uncertain Fractional Polynomial Optimization Problems [J]. Acta mathematica scientia,Series A, 2025, 45(2): 630-639. |
[3] | Hu Shanshan, He Suxiang. Optimality Conditions for Non-Negative Group Sparse Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2024, 44(2): 500-512. |
[4] | Jiaolang Wang,Donghui Fang. Approximate Optimality Conditions and Mixed Type Duality for a Class of Non-Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 651-660. |
[5] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[6] | Shengxin Hua,Guolin Yu,Wenyan Han,Xiangyu Kong. Characterization of Optimality to Constrained Vector Equilibrium Problems via Approximate Subdifferential [J]. Acta mathematica scientia,Series A, 2022, 42(2): 365-378. |
[7] | Xiao Wu,Yinying Kong,Zhenbin Guo. Asymptotic Optimality of Quantized Stationary Policies in Continuous-Time Markov Decision Processes with Polish Spaces [J]. Acta mathematica scientia,Series A, 2022, 42(2): 594-604. |
[8] | Baoyan Sun. Optimal Exponential Decay for the Linear Inhomogeneous Boltzmann Equation with Hard Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1853-1863. |
[9] | Lingli Hu,Liping Tian,Donghui Fang. Optimality Conditions for DC Composite Optimization Problems with Conical Constraints [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1079-1087. |
[10] | Meng Li,Guolin Yu. Optimality of Robust Approximation Solutions for Uncertain Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1007-1017. |
[11] | Lingli Hu, Donghui Fang. Optimality Conditions for Composite Optimization Problems with Conical Constraints [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1112-1121. |
[12] | Ye Yaojun, Hu Yue. Global Existence and Exponential Decay of Solution for Some Higher-Order Wave Equation [J]. Acta mathematica scientia,Series A, 2018, 38(1): 110-121. |
[13] | Huang Zhenggang. A New Notion of Generalized Subgradients and Its Properties [J]. Acta mathematica scientia,Series A, 2015, 35(5): 927-935. |
[14] | ZHANG Chun-Guo, ZHANG Hai-Yan, GU Shang-Wu. Energy Decay Estimates for the Weakly Coupled Systems with Local Memory Damping [J]. Acta mathematica scientia,Series A, 2015, 35(1): 194-209. |
[15] | LONG Xian-Jun. Optimality Conditions for Approximate Solutions on Nonconvex Vector Equilibrium Problems in Asplund Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(3): 593-602. |
|