Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1912-1924.
Previous Articles Next Articles
Liya Liu1(),Daqing Jiang1,2,*(
)
Received:
2020-08-20
Online:
2021-12-26
Published:
2021-12-02
Contact:
Daqing Jiang
E-mail:liuliya_1993@hotmail.com;daqingjiang2010@hotmail.com
Supported by:
CLC Number:
Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth[J].Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Zhang F , Yang J H , Dai K , et al. Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation. Appl Microbiol Biot, 2016, 100 (3): 1511- 1521
doi: 10.1007/s00253-015-7130-z |
2 |
Tang Y Q , Shigematsu T , Morimura S , Kida K . Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors. J Biosci Bioeng, 2015, 119 (4): 375- 383
doi: 10.1016/j.jbiosc.2014.09.014 |
3 | Karafyllis I, Malisoff M, Krstic M. Ergodic theorem for stabilization of a hyperbolic PDE inspired by age-structured chemostat. 2015, arXiv: 1501.04321 |
4 |
Payen C , Dunham M J . Chemostat culture for yeast experimental evolution. Cold Spring Harbor Protocols, 2017, 2017 (7)
doi: 10.1101/pdb.prot089011 |
5 |
Chi M , Zhao W . Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment. Adv Differ Equ-Ny, 2018, 2018 (1): 120
doi: 10.1186/s13662-018-1573-3 |
6 |
Xu C , Yuan S , Zhang T . Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Anal-Hybri, 2018, 29, 373- 382
doi: 10.1016/j.nahs.2018.03.007 |
7 |
Zhang T , Zhang T , Meng X . Stability analysis of a chemostat model with maintenance energy. Appl Math Lett, 2017, 68, 1- 7
doi: 10.1016/j.aml.2016.12.007 |
8 |
Zhang T , Ma W , Meng X . Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input. Adv Differ Equ-Ny, 2017, 2017 (1): 115
doi: 10.1186/s13662-017-1163-9 |
9 |
Wang L , Jiang D Q , Regan D . The periodic solutions of a stochastic chemostat model with periodic washout rate. Commun Nonlinear Sci, 2016, 37, 1- 13
doi: 10.1016/j.cnsns.2016.01.002 |
10 |
Wang L , Jiang D Q . A note on the stationary distribution of the stochastic chemostat model with general response functions. Appl Math Lett, 2017, 73, 22- 28
doi: 10.1016/j.aml.2017.04.029 |
11 |
Butler G J , Wolkowicz G S K . A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J Appl Math, 1985, 45, 138- 151
doi: 10.1137/0145006 |
12 |
Wolkowicz G S K , Lu Z . Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J Appl Math, 1992, 52, 222- 233
doi: 10.1137/0152012 |
13 |
Wang L , Wolkowicz G S K . A delayed chemostat model with general nonmonotone response functions and differential removal rates. J Math Anal Appl, 2006, 321 (1): 452- 468
doi: 10.1016/j.jmaa.2005.08.014 |
14 |
Zhang Q M , Jiang D Q . Competitive exclusion in a stochastic chemostat model with Holling type Ⅱ functional response. J Math Chem, 2016, 54 (3): 777- 791
doi: 10.1007/s10910-015-0589-0 |
15 |
Sun S , Chen L . Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. J Math Chem, 2007, 42 (4): 837- 847
doi: 10.1007/s10910-006-9144-3 |
16 |
Wang L , Jiang D Q , Wolkowicz G , Regan D . Dynamics of the stochastic chemostat with Monod-Haldane response function. Sci Rep-UK, 2017, 7 (1): 13641
doi: 10.1038/s41598-017-13294-3 |
17 |
Cao Z W , Liu L Y . The threshold of stochastic chemostat model with Monod-Haldane response function. J Nonlinear Sci Appl, 2017, 10, 4364- 4371
doi: 10.22436/jnsa.010.08.29 |
18 |
He X , Ruan S , Xia H . Global stability in chemostat type equations with distributed time delays. SIAM J Math Anal, 1998, 29, 681- 696
doi: 10.1137/S0036141096311101 |
19 | Sun S , Sun Y , Zhang G , Liu X Z . Dynamical behavior of a stochastic two-species Monod competition chemostat model. Appl Math Comput, 2017, 298, 153- 170 |
20 |
Xu C , Yuan S . An analogue of break-even concentration in a simple stochastic chemostat model. Appl Math Lett, 2015, 48, 62- 68
doi: 10.1016/j.aml.2015.03.012 |
21 |
Lv X , Meng X , Wang X . Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation. Chaos Solitons Fract, 2018, 110, 273- 279
doi: 10.1016/j.chaos.2018.03.038 |
22 |
Imhof L , Walcher S . Exclusion and persistence in deterministic and stochastic chemostat models. J Differ Equa, 2005, 217, 26- 53
doi: 10.1016/j.jde.2005.06.017 |
23 |
Garrido-Atienza M J , Lopez-de-la-Cruz J , Caraballo T . Dynamics of some stochastic chemostat models with multiplicative noise. Commun Pure Appl Anal, 2017, 16, 1893- 1914
doi: 10.3934/cpaa.2017092 |
24 | Khasminskii R. Stochastic Stability of Differential Equations. Netherlands: Sijthoff and Noordhoff, 1980 |
25 |
Higham D J . An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43 (3): 525- 546
doi: 10.1137/S0036144500378302 |
26 | Mao X R , Yuan C . Stochastic Differential Equations with Markovian Switching. London: Imperial College Press, 2006 |
27 |
Zhu C , Yin G . Asymptotic properties of hybrid diffusion systems. SIAM J Control Optim, 2007, 46, 1155- 1179
doi: 10.1137/060649343 |
28 | Zhao Y N , Jiang D Q . The threshold of a stochastic SIS epidemic model with vaccination. Appl Math Comput, 2014, 243, 718- 727 |
[1] | Zhang Wenwen, Liu Zhijun, Wang Qinglong. Exponential Extinction, Stationary Distribution and Probability Density Function of A Stochastic Predator-Prey Model with Ornstein-Uhlenbeck Process [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1368-1379. |
[2] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[3] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[4] | Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872. |
[5] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[6] | Tengfei Wang,Tao Feng,Xinzhu Meng. Complex Dynamics and Stochastic Sensitivity Analysis of a Predator-Prey Model with Crowley-Martin Type Functional Response [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1192-1203. |
[7] | Haixia Li. Existence and Uniqueness of Positive Solutions to an Unstirred Chemostat with Toxins [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1175-1185. |
[8] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[9] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[10] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[11] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[12] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[13] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[14] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[15] | ZHANG Jing, REN Yan-Xia. Properties of Superdiffusions with Singular Branching Mechanism [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1474-1484. |
|