| 1 | Lewy H . On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull Amer Math Soc, 1936, 42 (12): 689- 692 |
| 2 | Hayek S I . Advanced Mathematical Methods in Science and Engineering. New York: Marcel Dekker, 2000 |
| 3 | Khuri S A . Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J Appl Math, 1996, 56 (1): 19- 39 |
| 4 | Weisstein E W . CRC Concise Encyclopedia of Mathematics. Boca Raton: CRC Press, 2002 |
| 5 | Begehr H . Dirichlet problems for the biharmonic equation. Gen Math, 2005, 13 (2): 65- 72 |
| 6 | Garnett J . Bounded Analytic Functions. New York: Academic Press, 1981 |
| 7 | Liu T S , Tang X M . Schwarz lemma at the boundary of strongly pseudoconvex domain in ${\mathbb C}^n$. Math Ann, 2016, 366 (1): 655- 666 |
| 8 | Liu T S , Tang X M . A new boundary rigidity theorem for holomorphic self-mappings of the unit ball in ${\mathbb C}^n$. Pure Appl Math Q, 2015, 11 (1): 115- 130 |
| 9 | Bonk M . On Bloch's constant. Proc Amer Math Soc, 1990, 110 (4): 889- 894 |
| 10 | Zhu J F . Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings. Filomat, 2018, 32 (15): 5385- 5402 |
| 11 | Liu T S , Wang J F , Tang X M . Schwarz lemma at the boundary of the unit Ball in ${\mathbb C}^n$ and its applications. J Geom Anal, 2015, 25 (3): 1890- 1914 |
| 12 | Bai X J , Huang J , Zhu J F . The Schwarz lemma at the boundary for harmonic mappings having zero of order p. Bull Malays Math Sci Soc, 2021, 44 (2): 827- 838 |
| 13 | Wang X T , Zhu J F . Boundary Schwarz lemma for solutions to Poisson's equation. J Math Anal Appl, 2018, 463 (2): 623- 633 |
| 14 | Heinz E . On one-to-one harmonic mappings. Pacfic J Math, 1959, 9 (1): 101- 105 |
| 15 | Pavlovi? M . Introduction to Function Spaces on the Disk. Belgrade: Mathemati?ki Institut SANU, 2004 |