Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1789-1802.
Previous Articles Next Articles
Received:
2022-11-07
Revised:
2023-03-02
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Liu Guowei, Wang Qiling. The Well-posedness of a Delayed Non-Newtonian Fluid on ${2D}$ Unbounded Domains[J].Acta mathematica scientia,Series A, 2023, 43(6): 1789-1802.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bellout H, Bloom F. Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids. Asymptotic Anal, 1995, 11: 131-167 |
[2] |
Bellout H, Bloom F, Nečas J. Young measure-valued solutions for non-Newtonian incompressible viscous fluids. Comm PDE, 1994, 19: 1763-1803
doi: 10.1080/03605309408821073 |
[3] | Bellout H, Bloom F, Nečas J. Phenomenological behavior of multipolar viscous fluids. Quart Appl Math, 1992, 5: 559-583 |
[4] | Bellout H, Bloom F, Nečas J. Existence, uniqueness and stability of solutions to the initial boundary value problem for bipolar viscous fluids. Differential Integral Equations, 1995, 8: 453-464 |
[5] |
Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions. Nonlinear Anal: TMA, 2001, 44: 281-309
doi: 10.1016/S0362-546X(99)00264-3 |
[6] |
Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal compact attractor. Nonlinear Anal: TMA, 2001, 43: 743-766
doi: 10.1016/S0362-546X(99)00232-1 |
[7] | Caraballo T, Real J. Navier-Stokes equations with delays. R Soc London Proc Ser A Math Phys Eng Sci, 2001, 457: 2441-2453 |
[8] |
Garrido-Atienza M J, Marín-Rubio P. Navier Stokes equations with delays on unbounded domains. Nonlinear Anal: TMA, 2006, 64: 1100-1118
doi: 10.1016/j.na.2005.05.057 |
[9] |
Jeong J, Park J. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete Contin Dyn Syst B, 2016, 21: 2687-2702
doi: 10.3934/dcdsb |
[10] | Li Y, Zhao C. Global attractor for a system of the non-Newtonian incompressible fluid in 2D unbounded domains. Acta Anal Funct Appl, 2002, 4: 1009-1327 |
[11] | Lion P L. Quelques Méthodes De Résolution Des Problems Aux Limits Non Linéaires. Paris: Dunod, 1969 |
[12] |
Liu G. Pullback asymptotic behavior of solutions for a 2D non-autonomous non-Newtonian fluid. J Math Fluid Mech, 2017, 19: 623-643
doi: 10.1007/s00021-016-0299-9 |
[13] |
Liu L, Caraballo T, Fu X. Dynamics of a non-automous incompressible non-Newtonian fluid with dely. Dyn Partial Differ Equ, 2017, 14: 375-402
doi: 10.4310/DPDE.2017.v14.n4.a4 |
[14] | Liu L, Caraballo T, Fu X. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete Contin Dyn Syst B, 2018, 23: 4285-4303 |
[15] | Málek J, Nečas J, Rokyta M, Ružička M. Weak and Measure-Valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996 |
[16] | Nečas J, Silhavy M. Multipular viscous fluids. Quart Appl Math, 1991, XLIX(2): 247-265 |
[17] | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997 |
[18] | Zhao C. Pullback asymptotic behavior of solutions for a non-autonomous non-Newtonian fluid on 2D unbounded domains. J Math Phys, 2012, 53: 1-22 |
[19] |
Zhao C, Li Y. $H^2$-compact attractor for a non-Newtonian system in two-dimensional unbound domains. Nonlinear Anal, 2004, 56: 1091-1103
doi: 10.1016/j.na.2003.11.006 |
[20] |
Zhao C, Li Y, Zhou S. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J Differential Equations, 2009, 247: 2331-2363
doi: 10.1016/j.jde.2009.07.031 |
[21] |
Zhao C, Liu G, An R. Global well-posedness and pullback attractors for an incompressible non-Newtonian fluid with infinite delays. Differ Equ Dyn Syst, 2017, 25: 39-64
doi: 10.1007/s12591-014-0231-9 |
[22] |
Zhao C, Liu G, Wang W. Smooth pullback attractors for a non-autonomous 2D non-Newtonian fluid and their tempered behaviors. J Math Fluid Mech, 2014, 16: 243-262
doi: 10.1007/s00021-013-0153-2 |
[23] |
赵才地, 阳玲, 刘国威, 许正雄. 类时滞非牛顿流方程组在二维无界区域上的整体适定性与拉回吸引子. 应用数学学报, 2017, 40(2): 287-311
doi: 10.12387/C2017025 |
Zhao C, Yang L, Liu G, Hsu C. Global well-posenness and pullback attractor for a delayed non-Newtonian fluid on two dimensional unbounded domains. Acta Math Appl Sinica Chinese Ser, 2017, 40(2): 287-311
doi: 10.12387/C2017025 |
|
[24] |
Zhao C, Zhou S. Uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J Math Phys, 2007, 48: 032702
doi: 10.1063/1.2709845 |
[25] |
Zhao C, Zhou S. Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. J Differential Equations, 2007, 238: 394-425
doi: 10.1016/j.jde.2007.04.001 |
[26] |
Zhao C, Zhou S, Li Y. Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays. Quart Appl Math, 2009, 67: 503-540
doi: 10.1090/qam/2009-67-03 |
[1] | Ge Chen, Chen Zhuozheng, Zhang Yu. Generalized Well-Posedness of Nash Equilibrium and Cooperative Equilibrium for Population Games with Set Payoffs [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1217-1228. |
[2] | Ren Hongyue, Zhou Liqun. Mean Square Exponential Synchronization of a Class of Proportional Delay Stochastic Neural Networks and Its Application [J]. Acta mathematica scientia,Series A, 2025, 45(3): 888-901. |
[3] | Liu Jia, Bao Xiongxiong. Asymptotic Stability of Pyramidal Traveling Front for Nonlocal Delayed Diffusion Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 44-53. |
[4] | Yang Yongli, Yang Yunrui. Traveling Wave Solutions to a Cholera Epidemic System with Spatio-Temporal Delay and Nonlocal Dispersal [J]. Acta mathematica scientia,Series A, 2025, 45(1): 110-135. |
[5] | Li Xin, Hao Wenjuan, Liu Yang. The Asymptotic Behavior of the Generalized Brinkman-Forchheimer Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 74-91. |
[6] | Hu Bingbing, Gao Jianfang. Oscillation Analysis of Numerical Solutions for a Class of Nonlinear Delay Differential Equations with Variable Coefficients [J]. Acta mathematica scientia,Series A, 2025, 45(1): 203-213. |
[7] | Tang Jun, Wu Ailong. Event-Triggered Control for a Class of Stochastic Time-Delay Nonlinear Systems [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1607-1616. |
[8] | Fan Tianjiao, Feng Lichao, Yang Yanmei. Generalization of Inequality and Its Application in Additive Time-Varying Delay Systems [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1335-1351. |
[9] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
[10] | Yin Ruixia, Wang Zedong, Zhang Long. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control [J]. Acta mathematica scientia,Series A, 2024, 44(4): 994-1011. |
[11] | Sun Xiaochun, Wu Yulian, Xu Gaoting. Global Well-Posedness for the Fractional Navier-Stokes Equations with the Coriolis Force [J]. Acta mathematica scientia,Series A, 2024, 44(3): 737-745. |
[12] | Xu Rui, Zhou Kaijuan, Bai Ning. A with-in Host HIV-1 Infection Dynamics Model Based on Virus-to-cell Infection and Cell-to-cell Transmission [J]. Acta mathematica scientia,Series A, 2024, 44(3): 771-782. |
[13] | Zheng Lanling, Ding Huisheng. Almost Automorphy for a Class of Delay Differential Equations with Non-densely Defined Operators on Banach Spaces [J]. Acta mathematica scientia,Series A, 2024, 44(2): 361-375. |
[14] | Zhang Xin, Wu Xinglong. The Initial Value Problem for a Modified Camassa-Holm Equation with Cubic Nonlinearity [J]. Acta mathematica scientia,Series A, 2024, 44(2): 376-383. |
[15] | Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel [J]. Acta mathematica scientia,Series A, 2024, 44(2): 429-452. |
|