| [1] | Ai W, Yin H. Neck analysis of extrinsic polyharmonic maps. Ann Global Anal Geom, 2017, 52(2): 129-156 |
| [2] | Angelsberg G, Pumberger D. A regularity result for polyharmonic maps with higher integrability. Ann Global Anal Geom, 2009, 35(1): 63-81 |
| [3] | Breiner C, Lamm T. Quantitative stratification and higher regularity for biharmonic maps. Manuscripta Math, 2015, 148(3/4): 379-398 |
| [4] | Chang S Y, Wang L, Yang P. A regularity theory of biharmonic maps. Comm Pure Appl Math, 1999, 52(9): 1113-1137 |
| [5] | Cheeger J, Naber A. Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent Math, 2013, 191: 321-339 |
| [6] | Cheeger J, Naber A. Quantitative stratification and the regularity of harmonic maps and minimal currents. Comm Pure Appl Math, 2013, 66(6): 965-990 |
| [7] | Chen Y, Zhu M. Bubbling analysis for extrinsic biharmonic maps from general Riemannian 4-manifolds. Sci China Math, 2023, 66(3): 581-600 |
| [8] | Chen Y, Zhu M. Doubling annulus Pohozaev type identity and applications to approximate biharmonic maps. Calc Var Partial Differential Equations, 2024, 63(1): Article 15 |
| [9] | Frehse J. A discontinuous solution of a mildly nonlinear elliptic system. Math Z, 1973, 134(3): 229-230 |
| [10] | Gastel A, Scheven C. Regularity of polyharmonic maps in the critical dimension. Comm Anal Geom, 2009, 17(2): 185-226 |
| [11] | Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton University Press, 1983 |
| [12] | Guo C Y, Jiang G C, Xiang C L, Zheng G F. Optimal higher regularity for biharmonic maps via quantitative stratification. arXiv:2401.11177 |
| [13] | He W, Jiang R. The regularity of a semilinear elliptic system with quadratic growth of gradient. J Funct Anal, 2019, 276(4): 1294-1312 |
| [14] | 何毓, 向长林, 郑高峰. 基于量化分层的内蕴双调和映照最优正则性. 中国科学: 数学, 2025, 55: 1-34 |
| [14] | He Y, Xiang C L, Zheng G F. Optimal regularity for intrinsic biharmonic maps via quantitative stratification. Sci Sin Math, 2025, 55: 1-34 |
| [15] | Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm Partial Differential Equations, 2008, 33: 245-262 |
| [16] | Lin F H. Gradient estimates and blow-up analysis for stationary harmonic maps. Ann of Math, 1999, 149(3): 785-829 |
| [17] | Liu L, Yin H. Neck analysis for biharmonic maps. Math Z, 2016, 283(3/4): 807-834 |
| [18] | Luckhaus S. Partial H?lder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ Math J, 1988, 37(2): 349-367 |
| [19] | Millot V, Pegon M, Schikorra A. Partial regularity for fractional harmonic maps into spheres. Arch Ration Mech Anal, 2021, 242: 747-825 |
| [20] | Montaldo S, Oniciuc C. A short survey on biharmonic maps between Riemannian manifolds. Rev Un Mat Argentina, 2006, 47(2): 1-22 |
| [21] | Moser R. A variational problem pertaining to biharmonic maps. Comm Partial Differential Equations, 2008, 33(7-9): 1654-1689 |
| [22] | Naber A, Valtorta D. Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann of Math, 2017, 185: 131-227 |
| [23] | Rivière T. Everywhere discontinuous harmonic maps into spheres. Acta Math, 1995, 175(2): 197-226 |
| [24] | Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheres. Ann of Math, 1981, 113(1): 1-24 |
| [25] | Scheven C. Dimension reduction for the singular set of biharmonic maps. Adv Cal Var, 2008, 1(1): 53-91 |
| [26] | Scheven C. An optimal partial regularity result for minimizers of an intrinsically defined second-order functional. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26(5): 1585-1605 |
| [27] | Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J Differential Geom, 1982, 17: 307-335 |
| [28] | Simon L. Theorems on the Regularity and Singularity of Minimal Surfaces and Harmonic Maps. Tokyo: Springer, 1996: 115-150 |
| [29] | Strzelecki P. On biharmonic maps and their generalizations. Calc Var Partial Differential Equations, 2003, 18: 401-432 |
| [30] | Strzelecki P, Zatorska-Goldstein A. On a nonlinear fourth order elliptic system with critical growth in first order derivatives. Adv Cal Var, 2008, 1(2): 205-222 |
| [31] | Wang C Y. Remarks on biharmonic maps into spheres. Calc Var Partial Differential Equations, 2004, 21: 221-242 |
| [32] | Wang C Y. Biharmonic maps from $\mathbb{R}^{4}$ into a Riemannian manifold. Math Z, 2004, 247: 65-87 |
| [33] | Wang C Y. Stationary biharmonic maps from $\mathbb{R}^{m}$ into a Riemannian manifold. Comm Pure Appl Math, 2004, 57: 419-444 |