Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1217-1228.
Previous Articles Next Articles
Ge Chen1,Chen Zhuozheng2,Zhang Yu1,*()
Received:
2024-10-29
Revised:
2025-06-06
Online:
2025-08-26
Published:
2025-08-01
Supported by:
CLC Number:
Ge Chen, Chen Zhuozheng, Zhang Yu. Generalized Well-Posedness of Nash Equilibrium and Cooperative Equilibrium for Population Games with Set Payoffs[J].Acta mathematica scientia,Series A, 2025, 45(4): 1217-1228.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Nash J. Noncooperative Games. Princeton: Princeton University, 1950 |
[2] | Sandholm W H. Population Games and Evolutionary Dynamics. Cambridge: MIT Press, 2010 |
[3] | Hofbauer J, Sandholm W H. Stable games and their dynamics. Journal of Economic Theory, 2009, 1.4(4): 1665-1693 |
[4] | Jia W S, Qiu X L, Peng, D T. The generic uniqueness and well-Posedness of Nash equilibria for stable population games. Journal of the Operations Research Society of China, 2021, 9: 455-464 |
[5] | Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective population games. Set-Valued and Variational Analysis, 2017, 25: 427-439 |
[6] |
赵薇, 杨辉, 吴隽永. 不确定参数下群体博弈均衡的存在性与通有稳定性. 应用数学学报, 2020, 43(4): 627-638
doi: 10.12387/C2020048 |
Zhao W, Yang H, Wu J Y. Existence and generic stability of equilibria for population games with uncertain parameters. Acta Mathematicae Applicatae Sinica, 2020, 43(4): 627-638
doi: 10.12387/C2020048 |
|
[7] | 陈华鑫, 贾文生. 群体博弈的逼近原理及通有收敛性. 数学物理学报, 2021, 41A(5): 397-405 |
Chen H X, Jia W S. Approximation theorem and general convergence of population games. Acta Math Sci, 2021, 41A(5): 397-405 | |
[8] | 王春, 杨辉, 杨光惠, 王国玲. 群体博弈与多目标群体博弈的逼近原理. 数学物理学报, 2023, 43A(3): 913-920 |
Wang C, Yang H, Yang G H, Wang G L. Approximation theorem of population games and multi-objective population games. Acta Math Sci, 2023, 43A(3): 913-920 | |
[9] | 杨辉. 群体博弈理论的新进展. 运筹学学报, 2024, 28(3): 27-45 |
Yang H. New advances in population game theory. Operations Research Transactions, 2024, 28(3): 27-45 | |
[10] | Chen H X, Jia W S. An approximation theorem and generic uniqueness of weakly Pareto-Nash equilibrium for multiobjective population games. Journal of the Operations Research Society of China, 2024. DOI: 10.1007/s40305-024-00565-w |
[11] |
Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games. Optimization Letters, 2019, 13: 1573-1582
doi: 10.1007/s11590-018-1303-5 |
[12] |
Yang Z, Zhang H Q. NTU core, TU core and strong equilibria of coalitional population games with infinitely many pure strategies. Theory and Decision, 2019, 87: 155-170
doi: 10.1007/s11238-019-09701-y |
[13] | 张弦. 多主从群体博弈中合作均衡的存在性. 应用数学学报, 2022, 45(2): 197-211 |
Zhang X. Existence of cooperative equilibria for Multi-leader-multi-follower population games. Acta Mathematicae Applicatae Sinica, 2022, 45(2): 197-211 | |
[14] | 武文俊, 杨光惠, 房才雅, 杨辉. 主从群体博弈合作均衡的通有稳定性. 数学物理学报, 2023, 43A(3): 921-929 |
Wu W J, Yang G H, Fang C Y, Yang H. Generic stability of cooperative equilibria for Leader-Follower population games. Acta Math Sci, 2023, 43A(3): 921-929 | |
[15] | Simon H A. A behavioral model of rational choice. Quarterly Journal of Economics, 1955, 69(1): 99-118 |
[16] | Anderlini L, Canning D. Structural stability implies robustness to bounded rationality. Journal of Economic Theory, 2001, 1.1(2):395-422 |
[17] | Yu C, Yu J. On structural stability and robustness to bounded rationality. Nonlinear Analysis: Theory, Methods & Applications, 2006, 65(3): 583-592 |
[18] | Yu C, Yu J. Bounded ratinality in multiobjective games. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67: 930-937 |
[19] | 杨光惠, 杨辉, 向淑文. 有限理性下参数最优化问题解的稳定性. 运筹学学报, 2016, 20(4): 1-10 |
Yang G H, Yang H, Xiang S W. Stability of solutions to parametric optimization problems under bounded rationality. Operations Research Transactions, 2016, 20(4): 1-10 | |
[20] |
俞建. 几类考虑有限理性平衡问题解的稳定性. 系统科学与数学, 2009, 29: 999-1008
doi: 10.12341/jssms08438 |
Yu J. Bounded rationality and stability of solution of some equilibrium problems. Journal of Systems Science and Mathematical Sciences, 2009, 29: 999-1008
doi: 10.12341/jssms08438 |
|
[21] |
俞建. 关于良定问题. 应用数学学报, 2011, 34(6): 1007-1022
doi: 10.12387/C2011104 |
Yu J. On well-posed problems. Acta Mathematicae Applicatae Sinica, 2011, 34(6): 1007-1022
doi: 10.12387/C2011104 |
|
[22] | 张海群. 有限理性下种群博弈中合作均衡的稳定性. 应用数学学报, 2022, 45(3): 432-447 |
Zhang H Q. The stability of cooperative equilibria for population games under bounded rationality. Acta Mathematicae Applicatae Sinica, 2022, 45(3): 432-447 | |
[23] | Chen T, Chen K T, Zhang Y. Well-posedness of weakly cooperative equilibria for multi-objective population games. Journal of the Operational Research Society of China, 2024. DOI: 10.1007/s40305-023-00526-9 |
[24] | 王明婷, 杨光惠, 杨辉. 有限理性下不确定性群体博弈弱 NS 平衡的稳定性. 数学物理学报, 2022, 42A(6): 1812-1825 |
Wang M T, Yang G H, Yang H. Stability of weak NS equilibria for population games with uncertain parameters under bounded rationality. Acta Math Sci, 2022, 42A(6): 1812-1825 | |
[25] | 张海群. 有限理性与一类群体博弈弱有效 Nash 均衡的稳定性. 数学物理学报, 2023, 43A(4): 1311-1320 |
Zhang H Q. Bounded rationality and stability of weakly efficient Nash equilibria for a class of population games. Acta Math Sci, 2023, 43A(4): 1311-1320 | |
[26] | 杨光惠, 杨辉. 有限理性下群体博弈 Nash 均衡的稳定性. 贵州大学学报: 自然科学版, 2019, 36(5): 1-3 |
Yang G H, Yang H. Stability of Nash equilibria of population games under bounded rationality. Journal of Guizhou University: Natural Science Edition, 2019, 36(5): 1-3 | |
[27] |
陈桃, 陈昆亭, 张宇. 集值种群博弈 Nash 均衡与合作均衡的存在性. 系统科学与数学, 2023, 43(12): 3263-3272
doi: 10.12341/jssms23038 |
Chen T, Chen K T, Zhang Y. Existence of Nash equilibria and cooperative equilibria for set payoffs population games. Journal of Systems Science and Mathematical Sciences, 2023, 43(12): 3263-3272
doi: 10.12341/jssms23038 |
|
[28] | Aubin J P, Ekeland I. Applied Nonlinear Analysis. New York: John Wiley and Sonns, 1984 |
[29] | Klein E, Thompson A C. Theory of Correspondences. New York: John Wiley and Sonns, 1984 |
[30] | Chen C R, Li M H. Hölder continuity of solutions to parametric vector equilibrium problems with nonlinear scalarization. Numerical Functional Analysis and Optimization, 2014, 35(6): 685-707 |
[31] | Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 1990, 67: 297-320 |
[32] | 俞建. 博弈论十五讲. 北京: 科学出版社, 2020 |
Yu J. Fifteen Lectures on Game Theory. Beijing: Science Press, 2020 |
[1] | Zhang Haiqun. Bounded Rationality and Stability of Weakly Efficient Nash Equilibria for a Class of Population Games [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1311-1320. |
[2] | Wang Chun,Yang Hui,GuangYang Hui,Wang Guoling. Approximation Theorem of Population Games and Multi-objective Population Games [J]. Acta mathematica scientia,Series A, 2023, 43(3): 913-920. |
[3] | Wu Wenjun,Yang Guanghui,Fang Caiya,Yang Hui. Generic Stability of Cooperative Equilibria for Leader-Follower Population Games [J]. Acta mathematica scientia,Series A, 2023, 43(3): 921-929. |
[4] | Mingting Wang,Guanghui Yang,Hui Yang. Stability of Weak NS Equilibria for Population Games with Uncertain Parameters Under Bounded Rationality [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1812-1825. |
[5] | Huaxin Chen,Wensheng Jia. Approximation Theorem and General Convergence of Population Games [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1566-1573. |
[6] | Gong Xiaoqing. Statistical Analysis on Evolutionary Behaviors of Games [J]. Acta mathematica scientia,Series A, 2006, 26(5): 747-752. |
|