| [1] | Montefusco E, Pellacci B, Verzini G. Fractional diffusion with Neumann boundary conditions: the logistic equation. Discrete Contin Dyn Syst Ser B, 2013, 18(8): 2175-2202 | | [2] | Pellacci B, Verzini G. Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems. J Math Biol, 2018, 76(6): 1357-1386 | | [3] | Chen Z Q, Kim P, Song R, Vondracek Z. Sharp Green function estimates for $ \Delta+\Delta^{\frac{\alpha}{2}} $ in $ C^{1,1} $ open sets and their applications. Illinois J Math, 2010, 54(3): 981-1024 | | [4] | Blazevski D, del-Castillo-Negrete D. Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless Cantori and nondiffusive transport. Phys Rev E, 2013, 87: Art 063106 | | [5] | Chen Z Q, Kim P, Song R, Vondracek Z. Boundary Harnack principle for $ \Delta+\Delta^{\alpha/2} $. Tran Amer Math Soc, 2012, 364(8): 4169-4205 | | [6] | Biagi S, Dipierro S, Valdinoci E, Vecchi E. A Hong-Krahn-Szeg? inequality for mixed local and nonlocal operators. Math Eng, 2023, 5(1): 1-25 | | [7] | Biagi S, Dipierro S, Valdinoci E, Vecchi E. A Faber-Krahn inequality for mixed local and nonlocal operators. Journal d'Analyse Mathématique, 2023, 150(2): 405-448 | | [8] | Biagi S, Dipierro S, Valdinoci E, Vecchi E. Mixed local and nonlocal elliptic operators: regularity and maximum principles. Comm Partial Differential Equations, 2022, 47(3): 585-629 | | [9] | Cassani D, Vilasi L, Wang Y. Local versus nonlocal elliptic equations: short-long range feld interactions. Adv Nonlinear Anal, 2020, 10: 895-921 | | [10] | Biagi S, Vecchi E, Dipierro S, Valdinoci E. Semilinear elliptic equations involving mixed local and nonlocal operators. Proc Roy Soc Edinburgh Sect A, 2021, 151(5): 1611-1641 | | [11] | Garain P, Kinnunen J. On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. Trans Amer Math Soc, 2022, 375(8): 5393-5423 | | [12] | Su X, Valdinoci E, Wei Y, Zhang J. Regularity results for solutions of mixed local and nonlocal elliptic equations. Mathematische Zeitschrift, 2022, 302: 1855-1878 | | [13] | Biagi S, Dipierro S, Valdinoci E, Vecchi E. A Brezis-Nirenberg type result for mixed local and nonlocal operators. Nonlin Diff Equa Appl NoDEA, 2025, 32: Art 62 | | [14] | Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437-477 | | [15] | Ros-Oton X, Serra J. Nonexistence results for nonlocal equations with critical and Supercritical nonlinearities. Comm Partial Differential Equations, 2015, 40(2): 115-133 | | [16] | Biagi S. The Brezis-Nirenberg problem for mixed local and nonlocal operators. Bruno Pini Mathematical Analysis Seminar, 2023, 14(1): 15-37 | | [17] | Biswas A. The Pohozaev identity for mixed local-nonlocal operator. arXiv: 2410.16661 | | [18] | da Silva J V, Fiscella A, Viloria V A B. Mixed local-nonlocal quasilinear problems with critical nonlinearities. J Differential Equations, 2024, 408(5): 494-536 | | [19] | Capozzi A, Fortunato D, Palmieri G. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann Inst H Poincare ANL, 1985, 2(6): 463-470 | | [20] | Gazzola F, Ruf B. Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv Differential Equations, 1997, 2(4): 555-572 | | [21] | Cerami G, Fortunato D, Struwe M. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann Inst H Poincare ANL, 1984, 1(5): 341-350 | | [22] | Willem M. Minimax Theorems. Boston: Birkhauser, 1996 | | [23] | Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521-573 | | [24] | Jabri Y. The Mountain Pass Theorem, Variants, Generalizations and Some Applications. Cambridge: Cambridge Univ Press, 2003 | | [25] | Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367(1): 67-102 | | [26] | Schechter M. Linking Methods in Critical Point Theory. New York: Springer Science & Business Media, 1999 |
|