| [1] |
Ambrosetti A, Badiale M, Cingolani S. Semiclassical states of nonlinear Schrödinger equations. Arch Rational Mech Anal, 1997, 140(3): 285-300
doi: 10.1007/s002050050067
|
| [2] |
Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc Var Partial Differential Equations, 2007, 30(1): 85-112
|
| [3] |
Benci V, D'Aprile T. The semiclassical limit of the nonlinear Schrödinger equation in a radial potential. J Differential Equations, 2002, 184(1): 109-138
doi: 10.1006/jdeq.2001.4138
|
| [4] |
Berestycki H, Lions P L.Nonlinear scalar field equations. I.Arch Rational Mech Anal, 1983, 82(4): 313-345
|
| [5] |
Buryak A, DiTrapani P, Skryabin D V, Trillo S. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys Rep, 2002, 370(2): 63-235
doi: 10.1016/S0370-1573(02)00196-5
|
| [6] |
Buryak A, Kivshar Y. Solitons due to second harmonic generation. Phys Lett A, 1995, 197(5/6): 407-412
doi: 10.1016/0375-9601(94)00989-3
|
| [7] |
Floer A, Weinstein A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential .J Funct Anal} 1986, 69(3): 397-408
doi: 10.1016/0022-1236(86)90096-0
|
| [8] |
Gidas B, Ni W, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68(3): 209-243
doi: 10.1007/BF01221125
|
| [9] |
Grossi M. Some results on a class of nonlinear Schrödinger equations. Math Z, 2000, 235: 687-705
doi: 10.1007/s002090000158
|
| [10] |
Grossi M. On the number of single-peak solutions of the nonlinear Schrödinger equation. de l'Institut Henri Poincaré C, Analyse non linéaire, 2002, 19(3): 261-280
|
| [11] |
Guo Y, Li S, Wei J, Zeng X. Ground states of two-component attractive Bose-Einstein condensates II: Semi-trivial limit behavior. Trans Amer Math Soc, 2019, 371(10): 6903-6948
doi: 10.1090/tran/2019-371-10
|
| [12] |
Guo Y, Lin C, Wei J. Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J Math Anal} 2017, 49(5): 3671-3715
doi: 10.1137/16M1100290
|
| [13] |
Guo Y, Seiringer R. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett Math Phys, 2014, 104(2): 141-156
doi: 10.1007/s11005-013-0667-9
|
| [14] |
Guo Y, Zeng X, Zhou H. Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann Inst H Poincaré C Anal Non Linéaire, 2016, 33(3): 809-828
doi: 10.4171/aihpc
|
| [15] |
Guo Y, Musso M, Peng S, Yan S. Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J Funct Anal, 2020, 279(6): Article 29
|
| [16] |
Lin T, Wei J. Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J Differential Equations, 2006, 229(2): 538-569
doi: 10.1016/j.jde.2005.12.011
|
| [17] |
Oh Y. Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$. Comm Partial Differential Equations, 1988, 13(12): 1499-1519
doi: 10.1080/03605308808820585
|
| [18] |
Oh Y. On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm Math Phys, 1990, 131(2): 223-253
doi: 10.1007/BF02161413
|
| [19] |
Peng S, Pi H. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete Contin Dyn Syst, 2016, 36(4): 2205-2227
doi: 10.3934/dcdsa
|
| [20] |
Peng S, Wang Z. Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch Ration Mech Anal, 2013, 208(1): 305-339
doi: 10.1007/s00205-012-0598-0
|
| [21] |
Strauss W. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55(2): 149-162
doi: 10.1007/BF01626517
|
| [22] |
Tang Z, Xie H. Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Commun Pure Appl Anal, 2020, 19(1): 311-328
|
| [23] |
Wang X. On concentration of positive bound states of nonlinear Schrödinger equations. Comm Math Phys, 1993, 153: 229-244
doi: 10.1007/BF02096642
|
| [24] |
Wang C, Zhou J. Infinitely many solitary waves due to the second-harmonic generation in quadratic media. Acta Math Sci Ser B (Engl Ed), 2020, 40(1): 16-34
|
| [25] |
Wang C, Zhou J. Infinitely many synchronized solutions to a nonlinearly coupled Schrödinger equations with non-symmetric potentials. Methods Appl Anal, 2020, 27: 243-273
doi: 10.4310/MAA.2020.v27.n3.a2
|
| [26] |
Yang J, Zhou T. Existence of single peak solutions for a nonlinear Schrödinger system with coupled quadratic nonlinearity. Adv Nonlinear Anal, 2022, 11(1): 417-431
|
| [27] |
Yew A, Champneys A, McKenna P. Multiple solitary waves due to second-harmonic generation in quadratic media. J Nonlinear Sci, 1999, 9(1): 33-52
doi: 10.1007/s003329900063
|
| [28] |
Yew A. Multipulses of nonlinearly coupled Schrödinger equations. J Differential Equations, 2001, 173(1): 92-137
|