1 引言
设$\mu$ 是$\mathbb{R}^{n}$ 上具有紧支撑的Borel概率测度.假若存在一可数集$\Lambda\subseteq \mathbb{R}^{n}$ 使得 $E(\Lambda)=\{{\rm e}^{-2\pi {\rm i} \langle \lambda,x \rangle}:\,\,\lambda\in \Lambda\}$ 是 $L^{2}(\mu)$ 的规范正交基,则称$\mu$ 是谱测度,此时, 我们也称 $\Lambda$ 是测度 $\mu$ 的谱.
1998年,Jorgensen和Pedersen[16 ] 首次发现了一个奇异的,非原子的四分Cantor测度 $\mu_{4,\{0,2\}}$ 是谱测度, 并且构造了一个典型谱
$\begin{eqnarray*} \Lambda=\{0, 1\}+4\{0, 1\}+4^{2}\{0, 1\}+\cdots, \text{(所有有限和)}.\end{eqnarray*}$
测度$\mu_{4, \{0,2\}}$ 是由迭代函数系
$\left\{\tau_{1}(x)=\frac{x}{4},\tau_{2}(x)=\frac{x+2}{4}\right\} $
(1.1) $\begin{equation}\mu_{4, \{0,2\}}(\cdot)=\frac{1}{2}\mu_{4, \{0,2\}}\circ \tau_{1}^{-1}(\cdot)+\frac{1}{2}\mu_{4, \{0,2\}}\circ \tau_{2}^{-1}(\cdot)\end{equation}$
随着Jorgensen和Pedersen找到了第一个奇异谱测度,越来越多的学者开始关注和研究谱测度理论,并且得到了许多重要结果.许多谱测度被相继构造出来,见文献[3 -6,10 ,16 ,17 ], 而这些都极大丰富了谱测度理论.通过观察分析我们发现上面大多数谱测度的构造都与和谐对密切相关.
定义1.1 [14 ] 设$R\in M_d(\mathbb{Z})$ 为整扩张矩阵,$D,C\subset\mathbb{Z}^d$ 为有限数字集且满足$\#D=\#C$ ,假若矩阵
$H=\frac{1}{\sqrt{\#D}}\left[{\rm e}^{2\pi {\rm i} \langle R^{-1}d, c\rangle}\right]_{d\in D, c\in C}$
为酉矩阵,即$HH^*=I$ ,其中$H^*$ 是$H$ 的共轭转置,$\#D$ 表示集$D$ 的势.则称$(R^{-1}D, C)$ 构成整和谐对, 此时也称$(R, D, C)$ 是一个Hadamard 三元组.
众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构.
设$\{\phi_{d}(x)\}_{d\in \mathcal{D}}$ 是一迭代函数系(IFS)
$\phi_{d}(x)=Q^{-1}(x+d),x\in \mathbb{R}^n,d\in\mathcal{D},$
其中$Q\in M_{n}(\mathbb{R})$ 是一实扩张矩阵,且$\mathcal{D}\subseteq \mathbb{R}^{n}$ 是一有限数字集其势为$\# \mathcal{D}$ . 我们知道存在唯一的Borel概率测度$\mu:=\mu_{Q,\mathcal{D}}$ 满足如下的不变方程
(1.2) $\begin{equation}\mu(\cdot)=\frac{1}{\# \mathcal{D}}\sum_{d\in \mathcal{D}}\mu\circ \phi_{d}^{-1}(\cdot).\end{equation}$
此测度是支撑在唯一的非空紧集$T(Q, \mathcal{D})$ 上且满足$T(Q,\mathcal{D})=\bigcup_{d\in \mathcal{D}}\phi_{d}(T(Q,\mathcal{D})).$ 该非空紧集还可表示为
$T(Q,\mathcal{D})=\left\{\sum_{j=1}^{\infty}Q^{-j}d_{j}:d_{j}\in \mathcal{D} \right\}.$
此时,称集$T(Q,\mathcal{D})$ 及测度$\mu_{Q,\mathcal{D}} $ 分别为自仿集和自仿测度.值得一提的是测度$\mu_{Q,\mathcal{D}}$ 还可表示为如下无穷卷积的形式$\mu_{Q,\mathcal{D}}=\delta_{Q^{-1}\mathcal{D}}\ast \delta_{Q^{-2}\mathcal{D}} \ast \cdots,$ 其中$\delta_{E}=\frac{1}{\# E}\sum_{e\in E}\delta_{e}$ 且$\delta_{e}$ 是在点$e$ 的Dirac测度.
在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ].
本文在前人的基础上继续研究平面上具有四元数字集的自相似测度的谱结构问题.
定理1.1 设$R=\begin{pmatrix} r_1 & r_2\\ r_3 & r_4 \end{pmatrix} \in M_{2}(\mathbb{Z})$ 并设$\Lambda$ 是$\mu_{Q,\mathcal{D}}$ 的极大正交集且$0\in \Lambda$ .
$\mathrm{(i)}$ 如果$R\Lambda$ 是$\mu_{Q,\mathcal{D}}$ 的极大正交集,则有
$\left\{\{r_1,r_3\},\{r_2,r_4\},\{r_1+r_2,r_3+r_4\} \right\}\equiv \left\{\{1,0\},\{0,1\},\{1\} \right\}\pmod 2 ;$
$\mathrm{(ii)}$ 如果$\left\{\{r_1,r_3\},\{r_2,r_4\},\{r_1+r_2,r_3+r_4\} \right\}\equiv \left\{\{1,0\},\{0,1\},\{1\} \right\}\pmod 2 $ ,则 $R\Lambda$ 是 $\mu_{Q,\mathcal{D}}$ 的正交集.
定义1.2 设$\mu$ 是$\mathbb{R}^n$ 上的奇异谱测度且它的谱为$\Lambda$ . 假若能找到所有的$R\in M_{n}(\mathbb{R})$ 使得$R\Lambda$ 也是$\mu$ 的谱.则称$R$ 是测度$\mu$ 的谱特征矩阵并且称$\Lambda$ 是关于$R$ 的测度$\mu$ 的特征谱.
定理1.2 设$R=\begin{pmatrix} r_1 & r_2\\ r_3 & r_4 \end{pmatrix}\in M_{2}(\mathbb{R})$ 且满足$r_1+r_2$ 和$r_3+r_4$ 都是整数.令$r=\gcd(r_1+r_2,r_3+r_4)$ . 如果$r>2q$ 且$\{r_1+r_2,r_3+r_4\}\equiv \{0,1\} \pmod 2$ ,则下面陈述相互等价
$\mathrm{(i)}$ $R$ 不是$\mu_{Q,\mathcal{D}}$ 的谱特征矩阵$;$
$\mathrm{(ii)}$ 存在非零的整向量循环节$\{x_{i}\}_{i=0}^{k-1}$ ,$(k\geq 1)$ 使得$x_{i+1}=Q^{-1}(x_{i}+j_{i})$ ,$0\leq i\leq k-1$ ,且$x_k:=x_0=Q^{-1}(x_{k-1}+j_{k-1})$ , 其中$j_{i}\in R\mathcal{C}_{q}$ ;
$\mathrm{(iii)}$ $RT(Q,\mathcal{C}_{q})\cap \mathbb{Z}^{2}\neq \{\vartheta\}$ ,其中
$T(Q,\mathcal{C}_{q})=\left\{\sum_{n=1}^{\infty}Q^{-n}c_{n}:\,c_{n}\in \mathcal{C}_{q}\,\text{且}\,n\in \mathbb{N} \right\},\,\,\,\vartheta=(0,0)^t;$
$\mathrm{(iv)}$ 存在词$I=i_{1}i_{2}\cdots i_{k}\in \Theta_{4}^{\ast}$ $(I\neq 0^{k})$ 使得$Q^{k}-E_{2}$ 是$R\tau^{\ast}(I)$ 的因子,这里$\tau$ 是极大树映射且满足对任意的$\sigma=\sigma_{1}\sigma_{2}\cdots \sigma_{n}\in \Theta_{4}^{\ast} $ , 有$\tau(\sigma)=\sigma_{n}$ . 其中$E_{2}$ 是$2$ 阶的单位矩阵.
2 预备知识与极大正交集
设$\mu$ 是$\mathbb{R}^2$ 上具有紧支撑的Borel概率测度.测度$\mu$ 的Fourier变换如下
(2.1) $\begin{equation}\hat{\mu}(\xi)=\int {\rm e}^{-2\pi {\rm i} \langle\xi, x \rangle}\text{d}\mu(x).\end{equation}$
设$\mathcal{D}=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ . 由(1.2)式和(2.1)式可得
(2.2) $\begin{equation}\hat{\mu}_{Q,\mathcal{D}}(\xi)=M_{\mathcal{D}}\left(\frac{\xi}{2q}\right)\hat{\mu}_{Q,\mathcal{D}}\left(\frac{\xi}{2q}\right),\end{equation}$
$M_{\mathcal{D}}(\xi)=\frac{1}{4}\sum_{d\in \mathcal{D}}{\rm e}^{-2\pi {\rm i} \langle d, \xi \rangle}=\frac{1}{4}\left(1+{\rm e}^{-2\pi {\rm i} \xi_{1}}+{\rm e}^{-2\pi {\rm i} \xi_{2}}+{\rm e}^{2\pi {\rm i} (\xi_{1}+\xi_{2})}\right).$
通过迭代式(2.2)可以得到测度$\mu_{Q,\mathcal{D}}$ 的Fourier变换的精确的表达如下
(2.3) $\begin{equation}\hat{\mu}_{Q,\mathcal{D}}(\xi)=\prod_{j=1}^{\infty}M_{\mathcal{D}}\left(\frac{\xi}{(2q)^{j}}\right),\quad \xi=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\in \mathbb{R}^2,\end{equation}$
通过计算可知$\mathcal{Z}\left(M_{\mathcal{D}}\right)=\bigcup_{i=1}^3 A_i,$ 其中
(2.4) $\begin{equation} A_1=\frac{1}{2} \begin{pmatrix} 1\\ 0 \end{pmatrix}+\mathbb{Z}^2, \quad A_2=\frac{1}{2} \begin{pmatrix} 0\\ 1 \end{pmatrix} +\mathbb{Z}^2, \quad A_3=\frac{1}{2} \begin{pmatrix} 1\\ 1 \end{pmatrix}+\mathbb{Z}^2. \end{equation}$
(2.5) $\begin{equation}\mathcal{Z}(\hat{\mu}_{Q,\mathcal{D}})=\bigcup_{j=1}^{\infty}(2q)^{j}\mathcal{Z}(M_{\mathcal{D}})=\bigcup_{j=1}^{\infty}(2q)^{j}(A_1\cup A_2 \cup A_3).\end{equation}$
由文献[21 ]可知,测度$\mu_{Q,\mathcal{D}}$ 是谱测度且它的谱为
(2.6) $\begin{equation}\Lambda(Q,\mathcal{C}_q)=\left\{\sum_{k=0}^{n}Q^{k}\mathcal{C}_{q}:n\geq 1 \right\}:=\mathcal{C}_{q}+Q\mathcal{C}_{q}+Q^{2}\mathcal{C}_{q}+\cdots,\,\,\text{所有有限和},\end{equation}$
(2.7) $\begin{equation}\mathcal{C}_{q}=\left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix},\,\,\,\begin{pmatrix} q\\ 0 \end{pmatrix}, \,\,\,\begin{pmatrix} 0\\ q \end{pmatrix}, \,\,\,\begin{pmatrix} q\\ q \end{pmatrix}\right\}=q\left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix},\,\,\,\begin{pmatrix} 1\\ 0 \end{pmatrix}, \,\,\,\begin{pmatrix} 0\\ 1 \end{pmatrix}, \,\,\,\begin{pmatrix} 1\\ 1 \end{pmatrix}\right\}:=q\{\vartheta,e_1,e_2,e_3\}.\end{equation}$
设$\Lambda\subset \mathbb{R}^2$ 是一可数集.令$E(\Lambda)=\{{\rm e}^{-2\pi {\rm i} \langle\lambda, x\rangle}: \lambda\in\Lambda\}.$ 假若$E(\Lambda)$ 是$L^2(\mu)$ 的一正交族(正交基),则称集$\Lambda$ 是测度$\mu$ 的一正交集(谱). 容易验证 $E(\Lambda)$ 的正交性与如下条件是等价的
(2.8) $\begin{equation}(\Lambda-\Lambda) \setminus \{0\}\subset \mathcal{Z}(\hat{\mu}),\end{equation}$
其中$\mathcal{Z}{\left(f\right)}$ 表示函数$f$ 的零集,即,$\mathcal{Z}{\left(f\right)}=\{x: f(x)=0\}$ . 因为正交集在平移意义下是不变的, 因此不失一般性,我们总假设$0\in \Lambda$ ,且有$\Lambda\subseteq \Lambda-\Lambda$ .
对任意的$\xi \in {\mathbb{R}^2}$ ,令
$ Q(\xi)=\sum_{\lambda\in\Lambda}|\hat{\mu}(\xi+\lambda)|^2.$
如下的定理给出了集$\Lambda$ 是测度$\mu$ 的正交集(谱)的充分必要条件.
定理2.1 [16 ] 设$\mu$ 是$\mathbb{R}^2$ 上具有紧支撑的Borel概率测度,且设$\Lambda\subset \mathbb{R}^2$ 是一可数集.则有
(i) $\Lambda$ 是测度$\mu$ 的正交集当且仅当$Q(\xi)\le 1$ ,$\xi\in\mathbb{R}^2$ . 此时,$Q(z)$ 是$\mathbb{C}^2$ 中的解析函数;
(ii) $\Lambda$ 是测度$\mu$ 的正交基当且仅当对任意的$\xi\in\mathbb{R}^2$ 均有$Q(\xi)\equiv 1$ .
对于测度$\mu_{Q,\mathcal{D}}$ , 考虑其$Q-$ 进制展开
(2.9) $\begin{equation}\Gamma_{q}=Q\left[-\frac{1}{3},\frac{2}{3} \right)^{2}\cap \mathbb{Z}^{2}=\left\{(m,n)^{t}\in\mathbb{Z}^{2}\,:\,-\frac{2q}{3}\leq m,n<\frac{4q}{3}\right\}\\.\end{equation}$
我们较容易验证$\Gamma_{q}$ 是$\mathbb{Z}^{2}$ 中模$Q$ 的完全剩余系, 就$\Gamma_{q}$ 而言,存在$\omega$ 的唯一展式, 即
$\omega=\sum_{k=0}^{\infty}Q^{k}c_{k}=\sum_{k=0}^{\infty}(2q)^{k}c_{k},\,\,\text{所有}\,c_{k}\in \Gamma_{q}\,\text{且}\,\text{对于充分大的}k,c_{k}=0\,.$
(2.11) $\begin{equation}\Gamma_{q}=\bigcup_{t\in T_{q}}(t+\mathcal{C}_{q}) \pmod Q,\end{equation}$
(2.11) $\begin{equation}T_{q}=\left\{(i,j)^{t}\in \Gamma_{q}\,:\,-\frac{q}{3}\leq i<\frac{2q}{3},\,-\frac{2q}{3}\leq j<\frac{4q}{3}\right\},\end{equation}$
并且$(t+\mathcal{C}_{q})\pmod Q \subseteq \Gamma_{q}.$
接下来,我们介绍符号动力系统的相关知识便于通过树结构来刻画极大正交集.
记$ \Theta_{4}=\{0,1,2,3\}$ ,且记$\Theta_{4}^{k}=\{I=i_{1}i_{2}\cdots i_{k}:\,\, i_{k}\in \Theta_{4}\} $ 表示长度为$k$ 的符号序列的全体且称$\Theta_{4}^{k}$ 中的元素是长度为$k$ 的词.我们约定$\Theta_{4}^{0}=\{\emptyset\}$ . 称$\Theta_{4}^{\ast}=\cup_{k=0}^{\infty}\Theta_{4}^{k}$ 为所有限词长的集合, 且称$\Theta_{4}^{\infty}=\{I=i_{1}i_{2}\cdots:\,\, i_{s}\in \Theta_{4}\}$ 为无穷词长集.对于$I\in \Theta_{4}^{\ast}$ ,$|I|$ 表示词$I$ 的长度.设$I=i_{1}i_{2}\cdots \in \Theta_{4}^{\infty}\cup \Theta_{4}^{\ast}$ , 可定义词$I$ 的长度为$s$ $(s\geq 1)$ 的前缀词如下
$\begin{align*}I|_{s}:= \left\{ \begin{array}{ll}i_{1}i_{2}\cdots i_{s},\,\, I\in \Theta_{4}^{\infty};\;\;\\ (I0^{\infty})|_{s},\, I\in \Theta_{4}^{\ast}.\\\end{array}\right.\end{align*}$
定义2.1 [21 ] 由$\Theta_{4}^{\ast}$ 到$\Gamma_{q}$ 的映射$\tau$ 称为极大树映射,假若
(i) $\tau(0^{k}i_{k+1})=qe_{i_{k+1}}$ ,$k\geq 0$ 且$i_{k+1}\in \Theta_{4}$ , 这里$0^{0}i_{1}=i_{1}$ ;
(ii) 对任意的$Ij\in \Theta_{4}^{\ast}$ , $\tau(Ij)=t_{I}+qe_{j} \pmod Q $ , 其中$t_{I}\in T_{q}$ ;
(iii) 对任意的$I\in \Theta_{4}^{\ast}$ ,存在$J\in \Theta_{4}^{\ast}$ 使得对充分大的$n$ 有$\tau(IJ0^{n})=0$ .
注 定义2.1中的条件$\mathrm{(i)}$ 确保$0\in \Lambda$ , 条件$\mathrm{(ii)}$ 是确保正交性且条件
$\mathrm{(iii)}$ 是确保其极大性.且记
$\tau(0)\equiv \begin{pmatrix} 0 \\ 0 \end{pmatrix} \pmod {2\mathbb{Z}^{2}};\,\tau(1)\equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \pmod {2\mathbb{Z}^{2}};$
$\,\tau(2)\equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix} \pmod {2\mathbb{Z}^{2}};\,\tau(3)\equiv \begin{pmatrix} 1 \\ 1 \end{pmatrix} \pmod {2\mathbb{Z}^{2}}.$
设$\tau$ 是由$\Theta_{4}^{\ast}$ 到$\Gamma_{q}$ 的极大树映射.记
(2.12) $\begin{equation}\Theta_{4}^{\tau}=\{I\in \Theta_{4}^{\infty}\,:\,\text{对充分大的}\,n,\tau(I|_{n})=0\}\subseteq \Theta_{4}^{\ast} 0^{\infty}.\end{equation}$
则可定义一个由$\Theta_{4}^{\tau}$ 到$\mathbb{Z}^{2}$ 的映射$\tau^{\ast}$
(2.13) $\begin{equation}\tau^{\ast}(I)=\sum_{k=1}^{\infty}(2q)^{k-1}\tau(I|_{k}),\,I\in \Theta_{4}^{\tau}.\end{equation}$
命题2.1 假设$\mathcal{A}\subseteq \mathbb{Z}^{2}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱. 则如下陈述成立
(i) 对任意的$\omega_{1},\omega_{2}\in \mathbb{R}^{2}$ ,$\mathcal{A}+\omega_{1}$ 也是$\delta_{Q^{-1}(\mathcal{D}+\omega_{2})}$ 的谱;
(ii) 如果$\widetilde{\mathcal{A}} \equiv \mathcal{A} \pmod Q$ ,则$\widetilde{\mathcal{A}}$ 也是$\delta_{Q^{-1}\mathcal{D}}$ 的谱.
证 因为$\mathcal{A}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱,则对任意的$a\neq a'\in \mathcal{A}$ 有$M_{\mathcal{D}}(Q^{-1}(a-a'))=0$ . 对任意的$\omega_{1},\omega_{2}\in\mathbb{R}^{2}$ ,$\lambda\neq \lambda'\in \mathcal{A}+\omega_1$ ,则有
$\begin{eqnarray*} M_{\mathcal{D}+\omega_{2}}(Q^{-1}(\lambda-\lambda')) &=& \frac{1}{\sqrt{\#\mathcal{D}}}\sum_{d'\in \mathcal{D}+\omega_{2}}{\rm e}^{-2\pi {\rm i} \langle d',Q^{-1}(\lambda-\lambda')\rangle}\\ & = & \frac{1}{\sqrt{\#\mathcal{D}}}\sum_{d\in\mathcal{D}}{\rm e}^{-2\pi {\rm i} \langle d,Q^{-1}(\lambda-\lambda')\rangle}\cdot {\rm e}^{-2\pi {\rm i} \langle \omega_{2},Q^{-1}(\lambda-\lambda')\rangle} = 0. \end{eqnarray*}$
因此$\mathcal{A}+\omega_{1}$ 是$\delta_{Q^{-1}(\mathcal{D}+\omega_{2})}$ 的谱.
因为$\widetilde{\mathcal{A}} \equiv \mathcal{A} \pmod Q$ ,则有$\widetilde{\mathcal{A}}=\{a+Ql_{q}:a\in\mathcal{A}\}$ 且
$\begin{eqnarray*} H(\widetilde{\mathcal{A}})&=&\frac{1}{\sqrt{\#\mathcal{D}}}[{\rm e}^{-2\pi {\rm i} \langle Q^{-1}d,a+Ql_{q}\rangle}]_{d\in\mathcal{D},a\in\mathcal{A}}\\ &=&\frac{1}{\sqrt{\#\mathcal{D}}}[{\rm e}^{-2\pi {\rm i} \langle Q^{-1}d,a\rangle}\cdot {\rm e}^{-2\pi {\rm i} \langle Q^{-1}d,Ql_{q}\rangle}]_{d\in\mathcal{D},a\in\mathcal{A}}\\ &=&\frac{1}{\sqrt{\#\mathcal{D}}}[{\rm e}^{-2\pi {\rm i} \langle Q^{-1}d,a\rangle}]_{d\in\mathcal{D},a\in\mathcal{A}}=H(\mathcal{A}). \end{eqnarray*}$
因此$\widetilde{\mathcal{A}}$ 也是$\delta_{Q^{-1}\mathcal{D}}$ 的谱.
(2.14) $\begin{equation}\mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}})=(qe_{1}+2q\mathbb{Z}^{2})\cup (qe_{2}+2q\mathbb{Z}^{2})\cup (qe_{3}+2q\mathbb{Z}^{2}).\end{equation}$
因此$(\mathcal{C}_{q}-\mathcal{C}_{q})\setminus \{0\}\subseteq \mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}}).$ 又因为$\# \mathcal{C}_{q}=\# \mathcal{D}=\dim{(L^{2}(\delta_{Q^{-1}\mathcal{D}}))}=4 $ , 因此$\mathcal{C}_{q}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱.
定义2.2 称集$\mathcal{A}$ $(\#\mathcal{A}\geq 2)$ 是测度$\mu_{Q,\mathcal{D}}$ 的极大正交集,如果$\mathcal{A}\subseteq\Gamma_{q}$ 是测度$\mu_{Q,\mathcal{D}}$ 的正交集且对于任意的$a\in \Gamma_{q}\setminus \mathcal{A}$ ,$\mathcal{A}\cup\{a\}$ 不是测度$\mu_{Q,\mathcal{D}}$ 的正交集.
命题2.2 设$\mathcal{A}\subseteq\Gamma_{q}$ . 则以下陈述等价
(i) $\mathcal{A}$ 是$\mu_{Q,\mathcal{D}}$ 的极大正交集;
(ii) $\mathcal{A}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱;
(iii) 对任意的$a\in \mathcal{A}$ ,$\mathcal{A}=a+\mathcal{C}_{q}\pmod Q $ .
证 首先, 我们证明$\mathcal{A}\subseteq\Gamma_{q}$ 是$\mu_{Q,\mathcal{D}}$ 的正交集当且仅当$\mathcal{A} $ 是$\delta_{Q^{-1}\mathcal{D}}$ 的正交集.假设 $\mathcal{A}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的正交集,则由(2.8)式可知$(\mathcal{A}-\mathcal{A})\setminus\{0\}\subseteq\mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}})\subseteq\mathcal{Z}(\hat{\mu}_{Q,\mathcal{D}}).$ 因此$\mathcal{A}$ 是$\mu_{Q,\mathcal{D}}$ 的正交集.反之,假设$\mathcal{A}$ 是$\mu_{Q,\mathcal{D}}$ 的正交集,因为$\Gamma_{q}=Q\left[-\frac{1}{3},\frac{2}{3}\right)^{2}\cap\mathbb{Z}^{2}\subseteq\left[-\frac{2q}{3},\frac{4q}{3}\right)^{2}$ , 则有$(\mathcal{A}-\mathcal{A})\setminus\{0\}\subseteq (-2q,2q)^{2}\cap\mathcal{Z}(\hat{\mu}_{Q,\mathcal{D}})\subseteq\mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}}).$ 因此由上式可知$\mathcal{A}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的正交集.
假若$\mathcal{A} $ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱,则对任意的$a\in \Gamma_{q}\setminus \mathcal{A}$ ,$\mathcal{A}\cup\{a\}$ 不是 $\delta_{Q^{-1}\mathcal{D}}$ 的正交集并且它也不是测度$\mu_{Q,\mathcal{D}}$ 的正交集.因此$\mathcal{A}$ 是测度$\mu_{Q,\mathcal{D}}$ 的极大正交集.
另一方面,假设$\mathcal{A}$ 是$\mu_{Q,\mathcal{D}}$ 的极大正交集, 则它也是$\delta_{Q^{-1}\mathcal{D}}$ 的正交集,因此$\#\mathcal{A}\leq 4$ . 接下来将分成以下两种情形.
如果$2\leq \#\mathcal{A}<3$ ,记$\mathcal{A}=\{a_1,a_2\}$ , 则有
$ a_{1}-a_{2}\in \mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}})\equiv \left\{q \begin{pmatrix} 1 \\ 0 \end{pmatrix},q \begin{pmatrix} 0 \\ 1 \end{pmatrix}, q \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \pmod Q.$
不失一般性, 假设$a_{1}-a_{2}\equiv q\begin{pmatrix} 1\\ 0 \end{pmatrix} \pmod Q$ . 设$a_{3}\equiv a_{2}+q \begin{pmatrix} 0\\ 1 \end{pmatrix} \pmod Q $ . 则有
$a_{3}-a_{2}\equiv q \begin{pmatrix} 0\\ 1 \end{pmatrix} \pmod Q, $
$a_{3}-a_{1}=a_{3}-a_{2}+a_{2}-a_{1}\equiv q \begin{pmatrix} 0\\ 1 \end{pmatrix}-q \begin{pmatrix} 1\\ 0 \end{pmatrix} \equiv q \begin{pmatrix} 1\\ 1 \end{pmatrix}\pmod Q. $
因此$a_{3}-a_{1},a_{3}-a_{2} \in \mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}})\subseteq \mathcal{Z}(\hat{\mu}_{Q,\mathcal{D}})$ , 而由上式可知$\mathcal{A}\cup\{a_{3}\}$ 是 $\mu_{Q,\mathcal{D}}$ 的正交集. 而这与$\mathcal{A}$ 的极大性矛盾.
如果$3\leq \#\mathcal{A}<4$ , 记$\mathcal{A}=\{a_{1},a_{2},a_{3}\}$ , 则有
$a_{2}-a_{1},a_{3}-a_{2}\in\mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}})\equiv \left\{q \begin{pmatrix} 1 \\ 0 \end{pmatrix},q \begin{pmatrix} 0 \\ 1 \end{pmatrix}, q \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \pmod Q.$
不失一般性, 假设$a_{2}-a_{1}\equiv q \begin{pmatrix} 1\\ 0 \end{pmatrix} \pmod Q$ , $a_{3}-a_{2}\equiv q \begin{pmatrix} 0\\ 1 \end{pmatrix} \pmod Q$ . 设$a_{4}\equiv a_{2}+ q \begin{pmatrix} 1\\ 1 \end{pmatrix} \pmod Q$ . 则有
$a_{4}-a_{2}\equiv q \begin{pmatrix} 1\\ 1 \end{pmatrix} \pmod Q,$
$\begin{eqnarray*} & &a_{3}-a_{1}=a_{3}-a_{2}+a_{2}-a_{1}\equiv q \begin{pmatrix} 0\\ 1 \end{pmatrix}+q \begin{pmatrix} 1\\ 0 \end{pmatrix}\equiv q \begin{pmatrix} 1\\ 1 \end{pmatrix}\pmod Q\\ & &a_{4}-a_{1}=a_{4}-a_{2}+a_{2}-a_{1}\equiv q \begin{pmatrix} 1\\ 1 \end{pmatrix}+q \begin{pmatrix} 1\\ 0 \end{pmatrix}\equiv q \begin{pmatrix} 0\\ 1 \end{pmatrix}\pmod Q\\ & &a_{4}-a_{3}=a_{4}-a_{2}+a_{2}-a_{3}\equiv q \begin{pmatrix} 1\\ 1 \end{pmatrix}-q \begin{pmatrix} 0\\ 1 \end{pmatrix}\equiv q \begin{pmatrix} 1\\ 0 \end{pmatrix}\pmod Q \end{eqnarray*}$
因此$a_{4}-a_{1},a_{4}-a_{2},a_{4}-a_{3} \in \mathcal{Z}(\hat{\delta}_{Q^{-1}\mathcal{D}})\subseteq\mathcal{Z}(\hat{\mu}_{Q,\mathcal{D}})$ , 而由上式可知 $\mathcal{A}\cup\{a_{4}\}$ 是$\mu_{Q,\mathcal{D}}$ 的正交集. 而这与$\mathcal{A}$ 的极大性矛盾.因此可知$\#\mathcal{A}=4$ , 而这也正是空间$L^{2}(\delta_{Q^{-1}\mathcal{D}})$ 的维数. 因此$\mathcal{A}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱.
假设$\mathcal{A}=\{a,a+a_{1},a+a_{2},a+a_{3}\}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱, 则由$\mathcal{A}$ 的正交性可知
$a_{1},a_{2},a_{3},a_{2}-a_{1},a_{3}-a_{1},a_{3}-a_{2}\in \left\{q \begin{pmatrix} 1 \\ 0 \end{pmatrix},q \begin{pmatrix} 0 \\ 1 \end{pmatrix}, q \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \pmod Q. $
进一步计算可得$\{a_{1},a_{2},a_{3}\}\equiv \left\{q \begin{pmatrix} 1 \\ 0 \end{pmatrix},q \begin{pmatrix} 0 \\ 1 \end{pmatrix}, q \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \pmod Q$ . 因此$\mathcal{A}\equiv a +\mathcal{C}_{q} \pmod Q$ .
反之, 假设$\mathcal{A}\equiv a +\mathcal{C}_{q} \pmod Q$ . 因为$\mathcal{C}_{q}$ 是$\delta_{Q^{-1}\mathcal{D}}$ 的谱, 则由命题2.1可知$\mathcal{A}$ 也是$\delta_{Q^{-1}\mathcal{D}}$ 的谱.
引理2.1 设$\tau$ 是由$\Theta_{4}^{\ast}$ 到$\Gamma_{q}$ 的极大树映射且设$I,J\in \Theta_{4}^{\tau}$ . 如果对某些$m\geq 1$ 有$\tau^{\ast}(I)\equiv \tau^{\ast}(J) \pmod {Q^{m}}$ ,则$I|_{m}=J|_{m}$ .
证 由条件假设可知$\tau^{\ast}(I|_{m})\equiv \tau^{\ast}(J|_{m}) \pmod {Q^m} $ . 假设$I|_{m}\neq J|_{m}$ . 不失一般性,假设$I|_{m}=i_1i_2\cdots i_m,\,J|_{m}=j_1j_2\cdots j_m $ ,且当$k=1,2,\cdots,m-1$ 时,有$i_k=j_k$ ,当$k=m$ 时,$i_m\neq j_m$ . 则
$\begin{eqnarray*} \tau^{\ast}(I|_{m})&=&\sum_{k=1}^{\infty}(2q)^{k-1}\tau\left((I|_{m})|_{k} \right)\\ &=&\tau(i_1)+2q\tau(i_1i_2)+\cdots +(2q)^{m-2}\tau(i_1i_2\cdots i_{m-1})+(2q)^{m-1}\tau(i_1i_2\cdots i_m), \end{eqnarray*}$
$\begin{eqnarray*} \tau^{\ast}(J|_{m})&=&\sum_{k=1}^{\infty}(2q)^{k-1}\tau\left((J|_{m})|_{k} \right)\\ &=&\tau(j_1)+2q\tau(j_1j_2)+\cdots +(2q)^{m-2}\tau(j_1j_2\cdots j_{m-1})+(2q)^{m-1}\tau(j_1j_2\cdots j_m). \end{eqnarray*}$
$\vert \tau^{\ast}(I|_{m})- \tau^{\ast}(J|_{m}) \vert=(2q)^{m-1}\vert q(e_{i_m}-e_{j_m}) \vert.$
记$\left((2q)^{m-1}q(e_{i_m}-e_{j_m}) \right)_{1}$ 与$\left((2q)^{m-1}q(e_{i_m}-e_{j_m}) \right)_{2}$ 分别是向量$\left((2q)^{m-1}q(e_{i_m}-e_{j_m}) \right)$ 的第一个和第二个坐标分量, 则有
$\left((2q)^{m-1}q(e_{i_m}-e_{j_m}) \right)_{k}<(2q)^{m},k=1,2$
定理2.2 [21 ] 设$\Lambda\subset \mathbb{R}^{2} $ 且$0\in \Lambda$ . 则$\Lambda$ 是测度$\mu_{Q,\mathcal{D}}$ 的极大正交集当且仅当存在一个极大树映射$\tau$ 使得$\Lambda=\tau^{\ast}(\Theta_{4}^{\tau})$ .
在本节的最后我们给出循环的相关定义这与一维的情形类似.
定义2.3 设$A\in M_{d}(\mathbb{Z})$ 是一整扩张矩阵且设$\mathcal{C} $ 是$\mathbb{Z}^{d}$ 中一数字集.如果存在 $\{c_{0},c_{1},\cdots,$ $c_{n-1}\}\subseteq \mathcal{C}$ 使得
$x_{1}=A^{-1}(x_{0}+c_{0}),x_{2}=A^{-1}(x_{1}+c_{1}),\cdots,x_{n-1}=A^{-1}(x_{n-2}+c_{n-2}),x_{0}=A^{-1}(x_{n-1}+c_{n-1}).$
则称有限集$S=\{x_0,x_1,\cdots,x_{n-1}\}$ 是$T(A,\mathcal{C})$ 中长度为$n$ 的循环. 此外,如果对于任意的$i$ $(0\leq i \leq n-1)$ ,有$|M_{\mathcal{C}}(x_i)|^{2}=1$ ,则称$S$ 是$M_{\mathcal{C}}-$ 循环.
例 2.1 设$A=\begin{pmatrix} 4 &0 \\ 0 & 4 \end{pmatrix}$ 且$\mathcal{C}=\left\{\begin{pmatrix} 14 \\ 14 \end{pmatrix},\,\begin{pmatrix} 40 \\ 43 \end{pmatrix},\,\begin{pmatrix} -3 \\ 12 \end{pmatrix}\right\}\subseteq \mathbb{Z}^{2}$ . 则 $S=\left\{\begin{pmatrix} 2\\ 6 \end{pmatrix},\,\begin{pmatrix} 4\\ 5 \end{pmatrix},\,\begin{pmatrix} 11\\ 12 \end{pmatrix} \right\}$ 是长度为$3$ 的循环.
引理2.2 设$S=\{x_{0},x_{1},\cdots,x_{n-1}\}$ 是一有限集.则$S$ 是循环当且仅当所有的点$x_{k}\,(0\leq k \leq n-1)$ 均在$T(A,\mathcal{C})$ 中.
证 首先, 证明必要性. 因为$S$ 是一循环,则由循环的定义可知存在$\{c_0,c_1,\cdots,c_{n-1}\}\subseteq \mathcal{C}$ 使得
(2.15) $\begin{equation}x_{0}=A^{-n}x_{0}+A^{-n}c_{0}+A^{-(n-1)}c_{1}+\cdots +A^{-1}c_{n-1}.\end{equation}$
$x_{0}=\sum_{k=1}^{\infty}A^{-nk}(c_{0}+Ac_{1}+\cdots+A^{n-1}c_{n-1}).$
$\begin{eqnarray*} x_{1}&=&\sum_{k=1}^{\infty}A^{-nk}(c_{1}+Ac_{2}+\cdots+A^{n-1}c_{0}),\\ x_{2}&=&\sum_{k=1}^{\infty}A^{-nk}(c_{2}+Ac_{3}+\cdots+A^{n-1}c_{1}),\\ &\vdots &\\ x_{n-1}&=&\sum_{k=1}^{\infty}A^{-nk}(c_{n-1}+Ac_{0}+\cdots+A^{n-1}c_{n-2}). \end{eqnarray*}$
由上可知点$x_{k}\,(0\leq k \leq n-1)$ 均在$T(A,\mathcal{C})$ 中.
另一方面,因为$T(A,\mathcal{C})=\left\{\sum_{k=1}^{\infty}A^{-k}c_{k}\,:\,\,c_{k}\in\mathcal{C} \right\}:=\sum_{k=1}^{\infty}A^{-k}\mathcal{C}$ , 则对所有的$i$ $(0\leq i \leq n-1)$ 有$x_{i}\in T(A,\mathcal{C})$ . 不失一般性, 这里我们只需要考虑$x_0$ 与$x_1$ . 设$x_{0}=\sum_{k=1}^{\infty}A^{-k}c_{k}$ 且$x_{1}=\sum_{k=1}^{\infty}A^{-k}c'_{k}$ ,其中$c_k,c'_{k}\in \mathcal{C}$ . 则有
$A^{-1}(x_{0}+c_{0})=\sum_{k=1}^{\infty}A^{-k}c_{k-1}:=\sum_{k=1}^{\infty}A^{-k}c'_{k}=x_{1},$
这里$c'_{k}:=c_{k-1},\,k\geq 1$ . 由循环的定义可知$S$ 是一循环.
(2.16) $\begin{equation}\Lambda(A,\mathcal{C})=\mathcal{C}+A^{t}\mathcal{C}+(A^{t})^{2}\mathcal{C}+\cdots,\,\, \text{所有有限和},\end{equation}$
下面的定理最先由Dutkay和Jorgensen[10 ] 给出,它在本文中起到非常重要的作用.
定理2.3 假设$(A,\mathcal{D},\mathcal{C})$ 是Hadamard三元组且$0\in \mathcal{D}\cap \mathcal{C}$ . 则$\Lambda(A,\mathcal{C})$ 是测度$\mu_{A,\mathcal{D}}$ 的谱当且仅当$S=\{\mathbf{0}\}$ 是$T(A,\mathcal{C})$ 中唯一的$M_{\mathcal{D}}$ - 循环.
3 定理1.1与定理1.2的证明
引理3.1 假若$\Lambda$ 是测度$\mu_{Q,\mathcal{D}}$ 的极大正交集且$0\in \Lambda$ ,则存在$\lambda_{1},\lambda_{2},\lambda_{3}\in\Lambda$ 使得$\{\lambda_{1},\lambda_{2},\lambda_{3}\}\equiv \{qe_{1},qe_{2},qe_{3}\} \pmod Q $ .
证 由定理2.2可知,存在一个由$\Theta_{4}^{\ast}$ 到$\Gamma_{q}$ 的极大树映射$\tau$ 使得$\Lambda=\tau^{\ast}(\Theta_{4}^{\tau})$ . 再根据定义2.1可知,存在$1J_{1},2J_{2},3J_{3}\in \Theta_{4}^{\tau}$ ,其中$J_{1},J_{2},J_{3}\in \Theta_{4}^{\ast}.$ 因此$\tau^{\ast}(1J_{1}),\tau^{\ast}(2J_{2}),\tau^{\ast}(3J_{3})\in \Lambda$ 且
$\begin{eqnarray*} \tau^{\ast}(1J_{1})&=&\sum_{k=1}^{\infty}(2q)^{k-1}\tau((1J_{1})|_{k})\\ &=&\tau(1)+(2q)\tau((1J_{1})|_{2})+(2q)^{2}\tau((1J_{1})|_{3})+\cdots\\ &=&\tau(1)+2q\left(\tau((1J_{1})|_{2})+(2q)\tau((1J_{1})|_{3})+\cdots+ (2q)^{k-1}\tau((1J_{1})|_{k+1})+\cdots \right). \end{eqnarray*}$
$\tau^{\ast}(1J_{1})\equiv \tau(1)\pmod Q.$
$\tau^{\ast}(2J_{2})\equiv \tau(2)\pmod Q\,\text{且}\,\tau^{\ast}(3J_{3})\equiv \tau(3)\pmod Q. $
$\tau(k)\equiv qe_{k}\pmod Q,\,\,k=1,2,3. $
令$\lambda_{1}=\tau^{\ast}(1J_{1}),\lambda_{2}=\tau^{\ast}(2J_{2}),\lambda_{3}=\tau^{\ast}(3J_{3})$ , 结论得证.
证明定理1.1 因为$R\Lambda$ 是测度$\mu_{Q,\mathcal{D}}$ 的极大正交集,则存在$\lambda_1,\lambda_2,\lambda_3\in R\Lambda$ 使得
$\{\lambda_1,\lambda_2,\lambda_3\}\equiv \{qe_1,qe_2,qe_3\} \pmod Q.$
$\lambda_1\equiv qe_1 \pmod Q,\,\lambda_2\equiv qe_2 \pmod Q,\,\lambda_3\equiv qe_3 \pmod Q.$
此外,存在$\lambda'_1,\lambda'_2,\lambda'_3\in \Lambda$ 使得
$\lambda_1=R\lambda'_1,\,\lambda_2=R\lambda'_2,\,\lambda_3=R\lambda'_3,$
$\{\lambda'_1,\lambda'_2,\lambda'_3\}\equiv \{qe_1,qe_2,qe_3\}\pmod Q.$
如果$\lambda'_1\equiv qe_1 \pmod Q$ ,$\lambda'_2\equiv qe_2 \pmod Q$ ,$\lambda'_3\equiv qe_3 \pmod Q$ ,则有
$\begin{eqnarray*} & &Rqe_1=\begin{pmatrix} qr_1\\qr_3 \end{pmatrix}\equiv \begin{pmatrix} q\\0 \end{pmatrix} \pmod Q;\\ & &Rqe_2=\begin{pmatrix} qr_2\\qr_4 \end{pmatrix}\equiv \begin{pmatrix} 0\\q \end{pmatrix} \pmod Q;\\ & &Rqe_3=\begin{pmatrix} q(r_1+r_2)\\q(r_3+r_4) \end{pmatrix}\equiv \begin{pmatrix} q\\q \end{pmatrix} \pmod Q. \end{eqnarray*}$
$\{r_1,r_3\}\equiv \{1,0\} \pmod 2,\,\{r_2,r_4\}\equiv \{0,1\} \pmod 2,\,\{r_1+r_2,r_3+r_4\}\equiv \{1\}\pmod 2.$
$\begin{eqnarray*} & & \lambda'_{1}\equiv qe_1 \pmod Q,\,\lambda'_{2}\equiv qe_3 \pmod Q,\,\lambda'_{3}\equiv qe_2 \pmod Q;\\ & & \lambda'_{1}\equiv qe_2 \pmod Q,\,\lambda'_{2}\equiv qe_1 \pmod Q,\,\lambda'_{3}\equiv qe_3 \pmod Q;\\ & & \lambda'_{1}\equiv qe_2 \pmod Q,\,\lambda'_{2}\equiv qe_3 \pmod Q,\,\lambda'_{3}\equiv qe_1 \pmod Q;\\ & & \lambda'_{1}\equiv qe_3 \pmod Q,\,\lambda'_{2}\equiv qe_1 \pmod Q,\,\lambda'_{3}\equiv qe_2 \pmod Q;\\ & & \lambda'_{1}\equiv qe_3 \pmod Q,\,\lambda'_{2}\equiv qe_2 \pmod Q,\,\lambda'_{3}\equiv qe_1 \pmod Q. \end{eqnarray*}$
$\begin{eqnarray*} & & \{r_1,r_3\}\equiv \{1,0\}\pmod 2,\,\{r_2,r_4\}\equiv \{1\} \pmod 2,\,\{r_1+r_2,r_3+r_4\}\equiv \{0,1\}\pmod 2;\\ & & \{r_2,r_4\}\equiv \{1,0\}\pmod 2,\,\{r_1,r_3\}\equiv \{0,1\} \pmod 2,\,\{r_1+r_2,r_3+r_4\}\equiv \{1\}\pmod 2;\\ & & \{r_2,r_4\}\equiv \{1,0\}\pmod 2,\,\{r_1+r_2,r_3+r_4\}\equiv \{0,1\} \pmod 2,\,\{r_1,r_3\}\equiv \{1\}\pmod 2;\\ & & \{r_1+r_2,r_3+r_4\}\equiv \{1,0\}\pmod 2,\,\{r_1,r_3\}\equiv \{0,1\} \pmod 2,\,\{r_2,r_4\}\equiv \{1\}\pmod 2;\\ & & \{r_1+r_2,r_3+r_4\}\equiv \{1,0\}\pmod 2,\,\{r_2,r_4\}\equiv \{0,1\} \pmod 2,\,\{r_1,r_3\}\equiv \{1\}\pmod 2. \end{eqnarray*}$
$\left\{\{r_1,r_3\},\{r_2,r_4\},\{r_1+r_2,r_3+r_4\} \right\}\equiv \left\{\{1,0\},\{0,1\},\{1\} \right\}\pmod 2. $
因为$\Lambda$ 是$\mu_{Q,\mathcal{D}}$ 的正交集,则对任意的$\lambda,\lambda'\in \Lambda$ ,有$\lambda-\lambda'\in \mathcal{Z}(\hat{\delta}_{Q^{-k}\mathcal{D}})$ , $k\geq 1$ . 又因为
$\mathcal{Z}(\hat{\delta}_{Q^{-k}\mathcal{D}})=Q^{k-1}\big((qe_{1}+Q \mathbb{Z}^{2})\cup(qe_{2}+Q \mathbb{Z}^{2})\cup(qe_{3}+Q\mathbb{Z}^{2})\big),$
$\lambda-\lambda'\equiv Q^{k-1}qe_{i} \pmod {Q^{k}},\,\,i\in\{1,2,3\}.$
如果$\lambda-\lambda' \equiv Q^{k-1}q\begin{pmatrix} 1\\ 0 \end{pmatrix} \pmod {Q^{k}} $ ,则有
$\lambda-\lambda'=Q^{k-1}q\begin{pmatrix} 1\\ 0 \end{pmatrix} +Q^{k}\begin{pmatrix} u_3 \\ u_4 \end{pmatrix},\,\,u_3,u_4\in\mathbb{Z}.$
$R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} qr_1\\ qr_3 \end{pmatrix} \pmod {Q^{k}}.$
如果$\{r_1,r_3\}\equiv \{1,0\} \pmod 2$ ,则有
$R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} q\\ 0 \end{pmatrix} \pmod {Q^{k}}.$
如果$\{r_1,r_3\}\equiv \{0,1\}\pmod 2 $ 或$\{r_1,r_3\}\equiv \{1\} \pmod 2 $ ,则有
$R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} 0\\ q \end{pmatrix} \pmod {Q^{k}},\,R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} q\\ q \end{pmatrix} \pmod {Q^{k}}. $
类似地,如果$\lambda-\lambda' \equiv Q^{k-1}q\begin{pmatrix} 0\\ 1 \end{pmatrix} \pmod {Q^{k}} $ 或$\lambda-\lambda' \equiv Q^{k-1}q\begin{pmatrix} 1\\ 1 \end{pmatrix} \pmod {Q^{k}} $ ,可推出
$\begin{eqnarray*} &&R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} q\\ 0 \end{pmatrix} \pmod {Q^{k}} \\ &\text{或}&\,\,R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} 0\\ q \end{pmatrix} \pmod {Q^{k}}\\ &\text{或}&\,\,R\lambda-R\lambda' \equiv Q^{k-1}\begin{pmatrix} q\\ q \end{pmatrix} \pmod {Q^{k}}. \end{eqnarray*}$
因此$(R\Lambda-R\Lambda)\setminus \{0\}\subseteq \mathcal{Z}(\hat{\mu}_{Q,\mathcal{D}})$ , 则$R\Lambda$ 是$\mu_{Q,\mathcal{D}}$ 的正交集.
定义3.1 设$I=i_{1}i_{2}\cdots \in \Theta_{4}^{\ast}\cup \Theta_{4}^{\infty}$ . 假若存在$N$ 使得$i_{N} \neq 0$ 并且对于任意的$n>N$ ,有$i_{n}=0$ ,则称$N$ 是词$I$ 的充分词长,记为$\ell(I)=N$ . 特别地,当$I=0^{n}$ 或$I=0^{\infty}$ 时,$\ell(I)=0$ .
定义3.2 设$\mathcal{A}\subseteq \Theta_{4}^{\ast}$ . 假若对任意的$I\in \Theta_{4}^{\infty}$ 有唯一的前缀点在$\mathcal{A}$ 中,则称$\mathcal{A}$ 是一切集.即,对任意的$I\in \Theta_{4}^{\infty}$ ,存在唯一的$n(n\geq 1)$ 使得$I|_{n}\in \mathcal{A}$ .
引理3.2 设$\mathcal{A}$ 为$\Theta_{4}^{\ast}$ 的切集.则$\Theta_{4}^{\ast}0^{\infty}=\mathcal{A}^{\ast}0^{\infty}$ .
证 因为$\mathcal{A}\subseteq \Theta_{4}^{\ast}$ ,则有
$\mathcal{A}^{\ast}0^{\infty}\subseteq \Theta_{4}^{\ast}0^{\infty}.$
另一方面,因为$\mathcal{A}$ 为$\Theta_{4}^{\ast}$ 的切集,则对任意的$I\in \Theta_{4}^{\ast}0^{\infty}$ ,存在$n_{1}>0$ 使得$I|_{n_1}:=I_{1}\in \mathcal{A}$ . 则有$I=I_{1}I_{n_{1}+1,\infty}$ . 类似地,对于$I_{n_{1}+1,\infty}\in \Theta_{4}^{\infty}$ ,存在$n_{2}>n_{1}$ 使得$I_{n_{1}+1,\infty}|_{n_2}:=I_{2}\in \mathcal{A}$ 且$I_{n_{1}+1,\infty}=I_{2}I_{n_{2}+1,\infty}$ . 因为$\mathcal{A}$ 是一有限集,因此$I$ 的充分词长也是有限的.通过归纳可得
$I=I_{1}I_{2}\cdots I_{m}0^{\infty}\in \mathcal{A}^{\ast}0^{\infty}.$
反之,对于任意的$I\in \Theta_{4}^{\ast}0^{\infty}$ ,不失一般性,记$I=i_1i_2\cdots i_n0^{\infty}$ . 则存在$k_1<n$ ,使得$I|_{k_1}=i_1\cdots i_{k_1}\in \mathcal{A}$ . 类似地,对于$I_{k_{1}+1,\infty}\in \Theta_{4}^{\infty}$ ,存在$k_2>k_1$ ,使得$I_{k_{1}+1,k_2}\in \mathcal{A}$ . 经过有限步可得
$I=I_{1,k_1}I_{k_{1}+1,k_2}\cdots I_{k_{n-1}+1,n}0^{\infty}\in \mathcal{A}^{\ast}0^{\infty}.$
定理3.1 设$\mathcal{A}\subseteq \Theta_{4}^{\ast}$ 是一切集.假若极大树映射$\tau$ 满足
(3.1) $\begin{equation}\tau(IJ)=\tau(J)\,,\, I\in \mathcal{A},\,J\in \Theta_{4}^{\ast}.\end{equation}$
则$\Theta_{4}^{\tau}=\mathcal{A}^{\ast}0^{\infty}$ 且$\Lambda=\tau^{\ast}(\Theta_{4}^{\tau})$ 是测度$\mu_{Q,\mathcal{D}}$ 的谱.
证 因为$\Theta_{4}^{\tau}=\{I\in \Theta_{4}^{\infty}\,:\,\text{充分大的}\,n,\tau(I|_{n})=0\}$ ,由引理3.2可知
$\Theta_{4}^{\tau}\subseteq \Theta_{4}^{\ast}0^{\infty}=\mathcal{A}^{\ast}0^{\infty}.$
$\tau(IJ)=\tau(J)\,,\, I\in \mathcal{A}^{\ast},\,J\in \Theta_{4}^{\ast}.$
因此,对任意的$I\in \mathcal{A}^{\ast}$ 有
$\tau(I0^{\infty}|_{k})=\tau(I0^{k-|I|})=\tau(0^{k-|I|})=0,\,\,k>|I|,$
其中$|I|$ 表示词$I$ 的长度.因此$\mathcal{A}^{\ast}0^{\infty}\subseteq \Theta_{4}^{\tau}$ ,即,$\Theta_{4}^{\tau}=\mathcal{A}^{\ast}0^{\infty}$ .
另一方面,对于任意的$I\in \mathcal{A}^{\ast}0^{\infty}$ ,不失一般性,假设$I|_{n}\in \mathcal{A}^{\ast}$ . 则对任意的$k>n$ 可得$\tau(I|_{k})=\tau(I|_{n}0^{k-n})=\tau(0^{k-n})=0.$
而上式意味着对于充分大的$k$ ,有$\tau(I|_{k})=0$ . 因此$\mathcal{A}^{\ast}0^{\infty}\subseteq \Theta_{4}^{\tau}$ ,即$\Theta_{4}^{\tau}=\mathcal{A}^{\ast}0^{\infty}$ .
接下来,我们证明$\Lambda=\tau^{\ast}(\Theta_{4}^{\tau})$ 是测度$\mu_{Q,\mathcal{D}}$ 的谱.记$N'=\max_{I\in \mathcal{A}}|I|$ . 对任意的$I\in \Theta_{4}^{n}$ ,有
$I0^{\infty}\in \Theta_{4}^{\ast}0^{\infty}=\mathcal{A}^{\ast}0^{\infty}.$
可找到一个整数$k$ 且$0\leq k<N'$ 使得$I0^{k}\in \mathcal{A}^{\ast}$ . 再由(3.1)式可得
$\tau(I0^{\infty}|_{j})=\tau(0^{\infty})=0,\,\,j>|I|+k.$
设$J_{I}=0^{\infty}$ , 由文献 [21, 定理$1.2$ ] 可知
$\max_{I\in \Theta_{4}^{n}}\beta_{I}^{\tau}\leq k<N'<\infty.$
因此$\Lambda=\tau^{\ast}(\Theta_{4}^{\tau})$ 是测度$\mu_{Q,\mathcal{D}}$ 的谱.
现在,我们选择一个特殊的切集$\mathcal{A}=\Theta_{4}^{n}$ . 如果极大树映射$\tau$ 满足
$\tau(IJ)=\tau(J),\,\forall\,I\in \Theta_{4}^{n},\,J\in \Theta_{4}^{\ast}.$
$\Theta_{4}^{\tau}=\mathcal{A}^{\ast}0^{\infty}=(\Theta_{4}^{n})^{\ast}0^{\infty}=\Theta_{4}^{n}\Theta_{4}^{\tau}.$
$\tau^{\ast}(\Theta_{4}^{\tau})=\tau^{\ast}(\Theta_{4}^{n})+Q^{n}\tau^{\ast}(\Theta_{4}^{\tau})$
$\tau^{\ast}(\Theta_{4}^{\tau})=\Lambda(Q^{n},\tau^{\ast}(\Theta_{4}^{n})).$
$\mathcal{D}_{n}=\mathcal{D}+Q\mathcal{D}+\cdots+Q^{n-1}\mathcal{D},$
则自仿测度$\mu_{Q,\mathcal{D}}$ 可表示如下
$\mu_{Q,\mathcal{D}}=\delta_{Q^{-n}\mathcal{D}^{n}} \ast \delta_{Q^{-2n}\mathcal{D}^{n}}\ast \cdots =\mu_{Q^{n},\mathcal{D}_{n}}. $
通过计算可知$\tau^{\ast}(\Theta_{4}^{n})$ 是$\delta_{Q^{-n}\mathcal{D}_{n}}$ 的谱,因此$(Q^{n},\mathcal{D}_{n},\tau^{\ast}(\Theta_{4}^{n}))$ 是Hadamard三元组.
定理3.2 假设 $R=\begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix}\in M_{2}(\mathbb{R})$ 且 $\left\{\{r_1,r_3\},\{r_2,r_4\},\{r_1+r_2,r_3+r_4\} \right\}\equiv \{\{1,0\},\{0,$ $1\},\{1\} \}\pmod 2 $ . 设$\tau$ 是极大树映射满足
(i) $t_{I}=a_{I}e_{i}$ 且对于$I\in \cup_{k=1}^{n}\Theta_{4}^{k}$ , 有$a_{I}\in \left[-\frac{2q}{3},\frac{q}{3} \right) $ ;
(ii) 对任意的$I\in \Theta_{4}^{n}$ ,$J\in\Theta_{4}^{\ast}$ ,$\tau(IJ)=\tau(J)$ .
则$(Q^{n},\mathcal{D}_{n},R\tau^{\ast}(\Theta_{4}^{n}))$ 是Hadamard三元组.
证 我们需要证明 $(Q^{n},\mathcal{D}_{n},R\tau^{\ast}(\Theta_{4}^{n}))$ 是 Hadamard 三元组, 换言之, 我们仅需证明 $R\tau^{\ast}(\Theta_{4}^{n})$ 是 $\delta_{Q^{-n}\mathcal{D}_{n}}$ 的谱.因为$\tau^{\ast}(\Theta_{4}^{n})$ 是 $\delta_{Q^{-n}\mathcal{D}_{n}}$ 的谱, 则对任意的$I\neq J\in \Theta_{4}^{n}$ 有
$(\tau^{\ast}(I)-\tau^{\ast}(J))\in\mathcal{Z}(\hat{\delta}_{Q^{-n}\mathcal{D}_{n}})=\bigcup_{k=1}^{n}(2q)^{k}\left(q\{e_1,e_2,e_3\}\cup 2q\mathbb{Z}^{2}\right), $
因此存在$k (1\leq k \leq n)$ 使得$ \tau^{\ast}(I)-\tau^{\ast}(J)=(2q)^{k}\omega, $ 其中$\omega=q\{e_1,e_2,e_3\}\cup 2q\mathbb{Z}^{2}$ . 并且
$R\tau^{\ast}(I)-R\tau^{\ast}(J)=R(2q)^{k}\omega=\begin{pmatrix} r_1 & r_2\\ r_3 & r_4 \end{pmatrix}(2q)^{k}\omega. $
如果$\omega\in qe_1\cup 2q\mathbb{Z}^{2}$ ,则有$R\tau^{\ast}(I)-R\tau^{\ast}(J)\in (2q)^{k}\left(q\begin{pmatrix} r_1 \\ r_3 \end{pmatrix}\cup 2q\mathbb{Z}^{2} \right)$ .
如果$\omega\in qe_2\cup 2q\mathbb{Z}^{2}$ ,则有$R\tau^{\ast}(I)-R\tau^{\ast}(J)\in (2q)^{k}\left(q\begin{pmatrix} r_2 \\ r_4 \end{pmatrix}\cup 2q\mathbb{Z}^{2} \right)$ .
如果$\omega\in qe_3\cup 2q\mathbb{Z}^{2}$ ,则有$R\tau^{\ast}(I)-R\tau^{\ast}(J)\in (2q)^{k}\left(q\begin{pmatrix} r_1+r_2 \\ r_3+r_4 \end{pmatrix}\cup 2q\mathbb{Z}^{2} \right)$ .
$R\tau^{\ast}(I)-R\tau^{\ast}(J)\in\mathcal{Z}(\hat{\delta}_{Q^{-n}\mathcal{D}_{n}}).$
因此$R(\tau^{\ast}(\Theta_{4}^{n}))$ 是$\delta_{Q^{-n}\mathcal{D}_{n}}$ 的正交集.此外,$R\tau^{\ast}(\Theta_{4}^{n})$ 的势为$4^n$ ,而这恰好也是空间$L^{2}(\delta_{Q^{-n}\mathcal{D}_{n}})$ 的维数. 因此$R\tau^{\ast}(\Theta_{4}^{n})$ 是$\delta_{Q^{-n}\mathcal{D}_{n}}$ 的谱. 所以$(Q^{n},\mathcal{D}_{n},R\tau^{\ast}(\Theta_{4}^{n}))$ 是Hadamard三元组.
证明定理1.2 假设$R$ 不是$\mu_{Q,\mathcal{D}}$ 的谱特征矩阵,则存在词 $I\in \Theta_{4}^{\infty}\backslash \Theta_{4}^{\ast}0^{\infty}$ ,即
$R\tau^{\ast}(I)=\sum_{k=1}^{n}R\tau(I|_{k})Q^{k-1}+Q^n\gamma_n,\,\,\text{任意的}\,n\geq1.$
$|\gamma_n|=|Q^{-n}R\tau^{\ast}(I)-\sum_{k=1}^{n}R\tau(I|_{k})Q^{k-n-1}|.$
因此存在$n_1,n_2$ ( $n_1<n_2$ ) 使得$\gamma_{n_1}=\gamma_{n_2}\neq \vartheta$ ,且
$\sum_{k=1}^{n_1}R\tau(I|_{k})Q^{k-1}+Q^{n_1}\gamma_{n_1}=\sum_{k=1}^{n_2}R\tau(I|_{k})Q^{k-1}+Q^{n_2}\gamma_{n_2}.$
记$k=n_2-n_1$ ,$x_1=\gamma_{n_1}$ . 则有
$x_1=\sum_{i=1}^{k}R\tau(I|_{n_1+i})Q^{i-1}+Q^{k}x_1.$
设$j_i=-\tau{I|_{n_1+i}}\in \mathcal{C}_{q}$ ,$1\leq i\leq k$ 且$x_{i+1}=Q^{-1}(x_{i}+j_{i})$ ,$1\leq i\leq k-1$ . 则$\{x_{i}\}_{i=1}^{k}$ 是一整循环.
由循环$\{x_i\}_{i=0}^{k-1}$ 的定义可知
$ Q^{k}x_{0}=x_{0}+\sum_{i=0}^{k-1}Q^{i}j_{i},\,\,j_{i}\in R\mathcal{C}_{q}.$
$x_{0}=\sum_{n=1}^{\infty}Q^{-nk}(j_0+Qj_1+Q^{2}j_2+\cdots +Q^{k-1}j_{k-1})\in T(Q,R\mathcal{C}_{q}).$
假设$\alpha\in RT(Q,\mathcal{C}_{q})\cap \mathbb{Z}^{2}$ 且$\alpha \neq \vartheta$ . 则有
$\alpha=\sum_{i=1}^{\infty}Q^{-i}Rd_{i},\,\,d_{i}\in \mathcal{C}_{q}.$
$\begin{eqnarray*} & &Q\alpha-Rd_{1}=Q^{-1}Rd_{2}+Q^{-2}Rd_{3}+\cdots \in RT(Q,\mathcal{C}_{q})\\ & & Q^{2}\alpha-QRd_{1}-Rd_{2}=Q^{-1}Rd_{3}+Q^{-2}Rd_{4}+\cdots \in RT(Q,\mathcal{C}_{q})\\ & & \cdots \cdots \end{eqnarray*}$
$ \beta_{n}:=Q^{n}\alpha-Q^{n-1}Rd_{1}-Q^{n-2}Rd_{2}-\cdots -Rd_{n}\in RT(Q,\mathcal{C}_{q})\cap \mathbb{Z}^{2},\,\,n\geq 1.$
因此存在$n_1,n_{2}$ $(n_1<n_2)$ 使得
$Q^{n_1}\alpha-Q^{n_{1}-1}Rd_{1}-Q^{n_{1}-2}Rd_{2}-\cdots -Rd_{n_1}=Q^{n_2}\alpha-Q^{n_{2}-1}Rd_{1}-Q^{n_{2}-2}Rd_{2}-\cdots -Rd_{n_2},$
$\begin{eqnarray*} \beta_{n_1}-Q^{n_2-n_1}\beta_{n_1}&=&-Q^{n_2-n_1-1}Rd_{n_1+1}-Q^{n_2-n_1-2}Rd_{n_1+2}-\cdots -Rd_{n_2}\\ &=&-R\tau^{\ast}(d_{n_2}d_{n_2-1}\cdots d_{n_1+1}). \end{eqnarray*}$
因为$k=n_2-n_1$ 且$I=d_{n_2}d_{n_2-1}\cdots d_{n_1+1}\in \Theta_{4}^{k}$ . 则有
$R\tau^{\ast}(I)(Q^{k}-E_2)^{-1}=\beta_{n_1}\in \mathbb{Z},$
其中$E_2$ 是$2$ 阶的单位矩阵. 因此$Q^{k}-E_{2}$ 是$R\tau^{\ast}(I)$ 的因子.
断言$\mathrm{(iv)}$ 成立,存在$\gamma\in \mathbb{Z}^2$ 使得$R\tau^{\ast}=(Q^k-1)\gamma$ . 则有
$\gamma=Q^k\gamma-R\tau^{\ast}(I)=Q^{2k}\gamma-Q^kR\tau^{\ast}(I)-R\tau^{\ast}(I)=Q^{2k}\gamma-R\tau^{\ast}(I^2).$
$\gamma=Q^{ik}\gamma-R\tau^{\ast}(I^{\ast}),\,\text{任意的}i\geq1.$
$\tau^{\ast}(I^{i}|_{n})\equiv \tau^{\ast}(I^{\infty}|_{n}) \pmod {Q^n},\,\,\text{任意的}\,1\leq n\leq ki.$
在本章节的最后,我们给出当矩阵$R$ 是对角型时,$R$ 是$\mu_{Q,\mathcal{D}}$ 的谱特征矩阵的充要条件.
定理3.3 令$R=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ 且满足$\{a,b\}\equiv 1 \pmod 2$ ,$\mathcal{C}_{q}$ 同式(2.7).则$\Lambda(Q,R\mathcal{C}_{q}) $ 是测度$\mu_{Q,\mathcal{D}}$ 的谱当且仅当$\gcd(a,b)=1$ .
证 首先,我们证明充分性.假设$\Lambda(Q,R\mathcal{C}_{q}) $ 不是测度$\mu_{Q,\mathcal{D}}$ 的谱,则由定理2.3可知,存在非零的$M_{\mathcal{D}}-$ 循环$S=\{x_0,x_1,\cdots,x_n-1\}$ ,由定义可知存在$c_{k}=(c_{k1},c_{k2})^{t}\in R\mathcal{C}_{q},\,0\leq k\leq n-1$ ,使得
$\begin{eqnarray*} x_{0}&=&(x_{01},x_{02})^{t}=\sum_{k=1}^{\infty}Q^{-nk}(c_{0}+Qc_{1}+Q^{2}c_{2}+\cdots +Q^{n-1}c_{n-1})\\ &=&(Q^n-E_2)^{-1}(c_0+Qc_1+\cdots+Q^{n-1}c_{n-1})\in\mathbb{Z}^{2}, \end{eqnarray*}$
因为$R\mathcal{C}_{q}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\,\begin{pmatrix} qa \\ 0 \end{pmatrix},\,\begin{pmatrix} 0 \\ qb \end{pmatrix},\,\begin{pmatrix} qa \\ qb \end{pmatrix} \right\},$ 则必有$c_{k1}=qac'_{k},c_{k2}=qbc'_{k}$ ,其中$c'_{k}\in\{0,1\}$ . 现在考虑$x_0$ 的第一坐标与第二坐标
$\begin{eqnarray*} x_{01}&=&\frac{1}{(2q)^{n}-1}(c_{01}+2qc_{11}+\cdots+(2q)^{n-1}c_{(n-1)1})\\ &=&\frac{qa}{(2q)^{n}-1}(c'_{0}+2qc'_{1}+\cdots+(2q)^{n-1}c'_{n-1}):=\frac{qas}{(2q)^{n}-1}\in\mathbb{Z}, \end{eqnarray*}$
$\begin{eqnarray*} x_{02}&=&\frac{1}{(2q)^{n}-1}(c_{02}+2qc_{12}+\cdots+(2q)^{n-1}c_{(n-1)2})\\ &=&\frac{qb}{(2q)^{n}-1}(c'_{0}+2qc'_{1}+\cdots+(2q)^{n-1}c'_{n-1}):=\frac{qbs}{(2q)^{n}-1}\in\mathbb{Z}, \end{eqnarray*}$
其中$s=c'_{0}+2qc'_{1}+\cdots+(2q)^{n-1}c'_{n-1}$ 且$\frac{qs}{(2q)^{n}-1}\subseteq \left[\frac{q}{2q-1} \right]\subseteq [0, 1]$ . 因为$\gcd(a,b)=1$ ,则有 $qs(Q^{n}-E_2)^{-1}\in\mathbb{Z}$ ,矛盾.因此$\Lambda(Q,R\mathcal{C}_{q})$ 是测度$\mu_{Q,\mathcal{D}}$ 的谱.
接下来证明必要性,假设$\gcd(a,b)=d\geq 2$ ,则有$a=da_1$ 且$b=db_1$ . 因为$\{a,b\}\equiv 1 \pmod 2$ ,则$\gcd(d,2q)=1$ . 由欧拉定理可知$d\mid (2q)^{n}-1$ , 并且$\frac{(2q)^{n}-1}{d}\leq \frac{(2q)^{n}-1}{2}$ ,则有
$\frac{(2q)^{n}-1}{d}=\frac{(2q-1)((2q)^{n-1}+(2q)^{n-2}+\cdots+2q+1)}{d}:=c'_{0}+2qc'_{1}+\cdots+(2q)^{n-1}c'_{n-1},$
其中$c'_{k}\in\{0,1\}$ . 令$c_{k}=(c_{k1},c_{k2})^{t}$ 且$c_{k1}=ac'_{k}$ ,$c_{k2}=bc'_{k}$ . 我们通过递归方法来构造$S=\{x_0,x_1,\cdots,x_{n-1}\}$ . 定义
$\begin{eqnarray*} x_{0}&=&\sum_{k=0}^{\infty}Q^{-nk}(Q^{-1}c_{n-1}+Q^{-2}c_{n-2}+\cdots+Q^{-n}c_{0})\\ &=&(Q^{n}-E_2)^{-1}(c_0+Qc_1+\cdots+Q^{n-1}c_{n-1}), \end{eqnarray*}$
令 $x_{n-1}=Qx_{0}-c_{n-1}$ 且$x_{k}=Qx_{k+1}-c_{k},\,\,1\leq k \leq n-2$ , 则可得到有限集 $S=\{x_0,x_1,\cdots,$ $x_{n-1}\}$ . 此外,
$\begin{eqnarray*} x_{01}&=&\frac{1}{(2q)^{n}-1}(c_{01}+2qc_{11}+\cdots+(2q)^{n-1}c_{(n-1)1})\\ &=&\frac{qa}{(2q)^{n}-1}(c'_{0}+2qc'_{1}+\cdots+(2q)^{n-1}c'_{n-1})\\ &:=& a_1\in\mathbb{Z}, \end{eqnarray*}$
$\begin{eqnarray*} x_{02}&=&\frac{1}{(2q)^{n}-1}(c_{02}+2qc_{12}+\cdots+(2q)^{n-1}c_{(n-1)2})\\ &=&\frac{qb}{(2q)^{n}-1}(c'_{0}+2qc'_{1}+\cdots+(2q)^{n-1}c'_{n-1})\\ &:=& b_1\in\mathbb{Z}. \end{eqnarray*}$
由上可得$x_{0}\in\mathbb{Z}$ ,即,$S=\{x_0,x_1,\cdots,x_{n-1}\}$ 是循环,矛盾.
4 算例
例 4.1 设$Q_1=\begin{pmatrix} 4 & 0\\ 0 & 4 \end{pmatrix}$ 且$\mathcal{D}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\},$ $\mathcal{C}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\}.$ 则$R=\begin{pmatrix} 1 & -4\\ -6 & 11 \end{pmatrix}$ 是$\mu_{Q_{1},\mathcal{D}}$ 的谱特征矩阵.
证 首先,我们容易验证$(Q_{1},\mathcal{D},R\mathcal{C})$ 是Hadamard三元组. 接下来,我们仅需证明$S=\{\mathbf{0}\}$ 是$T(Q_{1},R\mathcal{C})$ 中唯一的$M_{\mathcal{D}}-$ 循环.假设$S_{1}=\{x_0,x_1,\cdots,x_{n-1}\}$ 是一非零循环,则由定义可知
(4.1) $\begin{equation}x_0=(Q_{1}^{n}-E_{2})^{-1}(c_0+Q_{1}c_1+Q_{1}^{2}c_2+\cdots +Q_{1}^{n-1}c_{n-1}),\end{equation}$
其中$c_0,c_1,\cdots,c_{n-1}\in R\mathcal{C}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -12 \end{pmatrix}, \begin{pmatrix} -8 \\ 22 \end{pmatrix}, \begin{pmatrix} -6 \\ 10 \end{pmatrix} \right\}$ 且$E_2$ 是$2$ 阶单位矩阵.
如果$c_0=c_1=\cdots =c_{n-1}=(0,0)^t$ ,则有$x_0=(0,0)^t$ ,由循环的定义可知$x_1=Q_{1}^{-1}(x_0+c_0)=(0,0)^t$ , 因此,进一步可得$x_2=x_3=\cdots x_{n-1}=(0,0)^t$ ,矛盾.
如果$c_0,c_1,\cdots,c_{n-1}$ 中有一个为$(0,0)^t$ ,因为$Q_{1}^{n-1}=\begin{pmatrix} 4^{n-1} & 0 \\ 0 & 4^{n-1} \end{pmatrix} $ , 对任意的$c_i\in R\mathcal{C}$ , $i=0,1,\cdots,n-1$ 且$n\geq 1$ , $Q_{1}^{n-1}c_{i}$ 可写成如下形式$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}\in \mathbb{Z}^{2}$ ,这里 $\alpha_1,\alpha_2\in 2\mathbb{Z}$ . 因此$c_0+Q_{1}c_1+\cdots +Q_{1}^{n-1}c_{n-1}$ 也能写成$\begin{pmatrix} \alpha_3 \\ \alpha_4 \end{pmatrix}\in \mathbb{Z}^{2}$ ,这里 $\alpha_3,\alpha_4\in 2\mathbb{Z}\setminus \{0\}$ ,又因为$Q_{1}^{n}-E_{2} $ 等于$\begin{pmatrix} 4^{n}-1 & 0 \\ 0 & 4^{n}-1\end{pmatrix}$ ,因此
$x_0=\begin{pmatrix}\frac{\alpha_3}{4^n-1}\\ \frac{\alpha_4}{4^n-1}\end{pmatrix}\notin \mathbb{Z}^{2},$
矛盾. 类似地, 如下的$n-1$ 情形: $c_0,c_1,\cdots,c_{n-1}$ 中有两个(三个,$\cdots$ ,$n-1$ 个,没有一个)等于$(0,0)^t$ , 我们可以得到同样结果,即,$x_{0}\notin \mathbb{Z}^{2}$ ,矛盾.因此$S=\{\mathbf{0}\}$ 是$T(Q_{1},R\mathcal{C})$ 中唯一的循环.由定理2.3可知矩阵$R$ 是$\mu_{Q_1,\mathcal{D}}$ 谱特征矩阵.
5 结语
本文主要研究的是平面上具有四元数字集的自相似测度的谱结构问题.通过将极大映射推广到平面,探究了测度$\mu_{Q,\mathcal{D}}$ 的极大正交集的结构,并且在此基础上研究了极大树映射的相关性质.另一方面,本文在极大正交集与极大树映射相关性质及结果的基础上还进一步探究了测度$\mu_{Q,\mathcal{D}}$ 的谱特征矩阵问题.该文研究的结果在一定程度上丰富了平面自相似谱测度的相关理论结果,并且也为后续研究其收敛性提供了一定的理论依据.
参考文献
View Option
[1]
An L X , He X G , Tao L . Spectrality of the planar Sierpinski family
J Math Anal Appl , 2015 , 4.2 (2 ): 725 -732
[本文引用: 1]
[2]
Chen M L , Yan Z H . On the spectrality of self-affine measures with four digits on $\mathbb{R}^{2}$
Internat J Math , 2021 , 32 (1 ): 215004
[本文引用: 1]
[3]
Chen S , Tang M W . Spectrality and non-spectrality of planar self-similar measures with four-element digit sets
Fractals , 2020 , 28 (7 ):2050130
[本文引用: 2]
[4]
Dai X R . When does a Bernoulli convolution admit a spectrum?
Adv Math , 2012 , 2.1 (3/4 ): 1681 -1693
[本文引用: 1]
[5]
Dai X R . Spectra of Cantor measures
Math Ann , 2016 , 3.6 (3 ): 1621 -1647
[6]
Dai X R , He X G , Lai C K . Spectral property of Cantor measures with consecutive digits
Adv Math , 2013 , 2.2 : 187 -208
[本文引用: 1]
[7]
Dai X R , He X G , Lau K S . On spectral N-Bernoulli meausure
Adv Math , 2014 , 2.9 : 511 -531
[本文引用: 1]
[8]
Dai X R , Fu X Y , Yan Z H . Spectrality of self-affine Sierpinski-type measures on $\mathbb{R}^2$
Appl Comput Harmon Anal , 2020 , 52 : 63 -81
[本文引用: 1]
[9]
Deng Q R , Lau K S . Sierpinski-type spectral self-similar measures
J Funct Anal , 2015 , 2.9 (5 ): 1310 -1326
[本文引用: 1]
[10]
Dutkay D , Jorgensen P . Fourier series on fractals: a parallel with wavelet theory
Contemp Math , 2008 , 4.4 : 75 -101
[本文引用: 2]
[11]
Dutkay D , Haussermann J , Lai C K . Hadamard triples generate self-affine spectral measures
Trans Amer Math Soc , 2019 , 3.1 (2 ): 1439 -1481
[本文引用: 1]
[12]
Dutkay D , Han D G , Sun Q Y . On the spectra of a Cantor measure
Adv Math , 2009 , 2.1 (1 ): 251 -276
[本文引用: 1]
[13]
Dutkay D , Lai C K . Uniformity of measures with Fourier frames
Adv Math , 2014 , 2.2 : 684 -707
[本文引用: 1]
[14]
He X G , Lai C K , Lau K S . Exponential spectra in $L^2(\mu)$
Appl Comput Harmon Anal , 2013 , 34 (3 ): 327 -338
[本文引用: 1]
[15]
He X G , Tang M W , Wu Z Y . Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures
J Funct Anal , 2019 , 2.7 (10 ): 3688 -3722
[本文引用: 1]
[16]
Jorgensen P , Pedersen S . Dense analytic subspaces in fractal $L^2$ spaces
J Anal Math , 1998 , 75 : 185 -228
[本文引用: 3]
[17]
Jorgensen P , Kornelson K , Shuman K . Affine systems: asymptotics at infinity for fractal measures
Acta Appl Math , 2007 , 98 : 181 -222
[本文引用: 1]
[18]
Łaba , Wang Y . On spectral Cantor measures
J Funct Anal , 2002 , 1.3 : 409 -420
[本文引用: 1]
[19]
Li J J , Wu Z Y . On spectral structure and spectral eigenvalue problems for a class of self similar spectral measure with product form
Nonlinearity , 2022 , 35 : 3095 -3117
[本文引用: 1]
[20]
Li J L . Spectra of a class of self-affine measures
J Funct Anal , 2011 , 2.0 : 1086 -1095
[本文引用: 1]
[21]
Li H X , Li Q . Spectral structure of planar self-similar measures with four-element digit set.
J Math Anal Appl , 2022 , 5.3 (1 ): 126202
[本文引用: 3]
Spectrality of the planar Sierpinski family
1
2015
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
On the spectrality of self-affine measures with four digits on $\mathbb{R}^{2}$
1
2021
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
Spectrality and non-spectrality of planar self-similar measures with four-element digit sets
2
2020
... 随着Jorgensen和Pedersen找到了第一个奇异谱测度,越来越多的学者开始关注和研究谱测度理论,并且得到了许多重要结果.许多谱测度被相继构造出来,见文献[3 -6 ,10 ,16 ,17 ], 而这些都极大丰富了谱测度理论.通过观察分析我们发现上面大多数谱测度的构造都与和谐对密切相关. ...
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
When does a Bernoulli convolution admit a spectrum?
1
2012
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Spectra of Cantor measures
2016
Spectral property of Cantor measures with consecutive digits
1
2013
... 随着Jorgensen和Pedersen找到了第一个奇异谱测度,越来越多的学者开始关注和研究谱测度理论,并且得到了许多重要结果.许多谱测度被相继构造出来,见文献[3 -6 ,10 ,16 ,17 ], 而这些都极大丰富了谱测度理论.通过观察分析我们发现上面大多数谱测度的构造都与和谐对密切相关. ...
On spectral N-Bernoulli meausure
1
2014
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Spectrality of self-affine Sierpinski-type measures on $\mathbb{R}^2$
1
2020
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
Sierpinski-type spectral self-similar measures
1
2015
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
Fourier series on fractals: a parallel with wavelet theory
2
2008
... 随着Jorgensen和Pedersen找到了第一个奇异谱测度,越来越多的学者开始关注和研究谱测度理论,并且得到了许多重要结果.许多谱测度被相继构造出来,见文献[3 -6 ,10 ,16 ,17 ], 而这些都极大丰富了谱测度理论.通过观察分析我们发现上面大多数谱测度的构造都与和谐对密切相关. ...
... 下面的定理最先由Dutkay和Jorgensen[10 ] 给出,它在本文中起到非常重要的作用. ...
Hadamard triples generate self-affine spectral measures
1
2019
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
On the spectra of a Cantor measure
1
2009
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Uniformity of measures with Fourier frames
1
2014
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Exponential spectra in $L^2(\mu)$
1
2013
... 定义1.1 [14 ] 设$R\in M_d(\mathbb{Z})$ 为整扩张矩阵,$D,C\subset\mathbb{Z}^d$ 为有限数字集且满足$\#D=\#C$ ,假若矩阵 ...
Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures
1
2019
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Dense analytic subspaces in fractal $L^2$ spaces
3
1998
... 1998年,Jorgensen和Pedersen[16 ] 首次发现了一个奇异的,非原子的四分Cantor测度 $\mu_{4,\{0,2\}}$ 是谱测度, 并且构造了一个典型谱 ...
... 随着Jorgensen和Pedersen找到了第一个奇异谱测度,越来越多的学者开始关注和研究谱测度理论,并且得到了许多重要结果.许多谱测度被相继构造出来,见文献[3 -6 ,10 ,16 ,17 ], 而这些都极大丰富了谱测度理论.通过观察分析我们发现上面大多数谱测度的构造都与和谐对密切相关. ...
... 定理2.1 [16 ] 设$\mu$ 是$\mathbb{R}^2$ 上具有紧支撑的Borel概率测度,且设$\Lambda\subset \mathbb{R}^2$ 是一可数集.则有 ...
Affine systems: asymptotics at infinity for fractal measures
1
2007
... 随着Jorgensen和Pedersen找到了第一个奇异谱测度,越来越多的学者开始关注和研究谱测度理论,并且得到了许多重要结果.许多谱测度被相继构造出来,见文献[3 -6 ,10 ,16 ,17 ], 而这些都极大丰富了谱测度理论.通过观察分析我们发现上面大多数谱测度的构造都与和谐对密切相关. ...
On spectral Cantor measures
1
2002
... 在2002年,Łaba和汪扬[18 ] 给出了一个具有深远影响的结果:一维上整和谐对生成的自相似测度是谱测度.随后,Dutkay,Haussermann和赖俊杰[11 ] 将此结果推广到高维的情形并得到了如下结果:设$(R,B,L)$ 是Hadamard三元组,则自仿测度$\mu_{R,B}$ 是谱测度,这里$R\in M_{d}(\mathbb{Z})$ 是扩张矩阵且$B,L\subset\mathbb{Z}^d(\#B=\#L)$ . 然而对于高维奇异的谱测度同样也是许多学者关注的对象. 很多自仿测度的谱性也已经被完全刻画. 例如, 安丽想等人[1 ] 证明了由扩张矩阵$Q\in M_{2}(\mathbb{Z})$ 和标准三元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t}\}$ 生成的平面自仿测度$\mu_{Q, D}$ 是谱测度当且仅当存在整数字集$S$ 使得$(M, D, S)$ 构成 Hadamard三元组. 随后,邓起荣和刘家成[9 ] 将整扩张矩阵推广到实扩张矩阵 $Q=\text{diag}(b, b)$ $(1<b\in\mathbb{R})$ ,得到了测度$\mu_{Q, D}$ 是谱测度当且仅当 $3\mid b$ . 在2020年, 戴欣荣, 付小叶和颜志辉[8 ] 进一步将其推广到实扩张矩阵 $Q=\text{diag}(b_1, b_2)$ $(b_1\neq b_2)$ , 他们证明了$\mu_{Q, D}$ 是谱测度当且仅当$3\mid b_i$ , $i=1,2$ . 最近,陈明亮和颜志辉[2 ] 研究了由四元数字集$D=\{(0,0)^{t},(1,0)^{t},(0,1)^{t},(-1,-1)^{t}\}$ 及扩张矩阵$Q=\text{diag}(b, b)$ 生成的测度$\mu_{Q, D}$ 的谱性, 他们得到了测度$\mu_{Q, D}$ 是谱测度当且仅当$2\mid b$ . 陈思和唐敏卫同样研究了平面上具有四元数字集的自相似测度的谱性,见文献[3 ]. ...
On spectral structure and spectral eigenvalue problems for a class of self similar spectral measure with product form
1
2022
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Spectra of a class of self-affine measures
1
2011
... 众所周知,对于一个给定的奇异谱测度可能存在不止一个谱,并且这些谱不是通过相互平移得到的. 换言之, 谱具有复杂的结构. 一维上的谱结构研究已有较多且较好的结果, 见文献[4 -7 ,12 ,13 ,15 ,19 ,20 ], 但是在高维上的结果却较少. 而本文就是研究平面上一类自仿测度的谱结构. ...
Spectral structure of planar self-similar measures with four-element digit set.
3
2022
... 由文献[21 ]可知,测度$\mu_{Q,\mathcal{D}}$ 是谱测度且它的谱为 ...
... 定义2.1 [21 ] 由$\Theta_{4}^{\ast}$ 到$\Gamma_{q}$ 的映射$\tau$ 称为极大树映射,假若 ...
... 定理2.2 [21 ] 设$\Lambda\subset \mathbb{R}^{2} $ 且$0\in \Lambda$ . 则$\Lambda$ 是测度$\mu_{Q,\mathcal{D}}$ 的极大正交集当且仅当存在一个极大树映射$\tau$ 使得$\Lambda=\tau^{\ast}(\Theta_{4}^{\tau})$ . ...