数学物理学报, 2025, 45(4): 1086-1099

上半空间分数阶 $p$-Laplace 算子相关的抛物方程解的单调性

马晶晶,1, 魏娜,2,*

1陕西师范大学数学与统计学院 西安 710119

2中南财经政法大学统计与数学学院 武汉 430073

Monotonicity of Solutions for Parabolic Equations Related to Fractional Order $p$-Laplace Operators on the Upper Half Space

Ma Jingjing,1, Wei Na,2,*

1School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119

2School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073

通讯作者: *E-mail: weina@zuel.edu.cn

收稿日期: 2024-11-27   修回日期: 2025-02-28  

基金资助: 国家自然科学基金(12071482)
陕西省高校青年创新团队, 陕西省数学和物理基础科学研究基金(22JSZ012)
中央高校基本科研业务费专项资金(GK202202007)
中央高校基本科研业务费专项资金(GK202307001)
中央高校基本科研业务费专项资金(GK202402004)

Received: 2024-11-27   Revised: 2025-02-28  

Fund supported: NSFC(12071482)
Youth Innovation Team of Shaanxi Universities, Shaanxi Fundamental Science Research Project for Mathematics and Physics(22JSZ012)
Fundamental Research Funds for the Central Universities(GK202202007)
Fundamental Research Funds for the Central Universities(GK202307001)
Fundamental Research Funds for the Central Universities(GK202402004)

作者简介 About authors

E-mail:mjjwnm@126.com

摘要

该文考虑上半空间分数阶 $p$-Laplace 算子相关的非线性抛物方程$\begin{cases} \frac{\partial u}{\partial t}(x,t)+(-\triangle)^s_pu(x,t)=f(u(x,t)), &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)>0, &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)=0, &\quad(x,t)\notin\mathbb{R}^{n}_+\times(0,\infty).\end{cases}$

首先, 证明有界域和无界域上反对称函数狭窄区域原理和极大值原理; 然后建立反对称函数 Hopf 引理; 最后, 利用移动平面法证明上半空间分数阶 $p$-Laplace 算子相关的抛物方程解的单调性.

关键词: 分数阶 $p$-Laplace 算子; 抛物方程; 单调性; 反对称函数 Hopf 引理; 移动平面法

Abstract

In this paper, we consider the nonlinear parabolic equation associated with the fractional $p$-Laplace operator on the upper half space $\begin{cases} \frac{\partial u}{\partial t}(x,t)+(-\triangle)^s_pu(x,t)=f(u(x,t)), &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)>0, &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)=0, &\quad(x,t)\notin\mathbb{R}^{n}_+\times(0,\infty). \end{cases}$

First, the narrow region principle and the maximum principle for antisymmetric functions are proved in both bounded and unbounded domains. Then, the Hopf lemma for antisymmetric functions is established. Finally, using the method of moving planes, the monotonicity of solutions to the parabolic equation associated with the fractional $p$-Laplace operator on the upper half space is demonstrated.

Keywords: fractional $p$-Laplace operator; parabolic equations; monotonicity; Hopf lemma for antisymmetric functions; moving plane method

PDF (595KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马晶晶, 魏娜. 上半空间分数阶 $p$-Laplace 算子相关的抛物方程解的单调性[J]. 数学物理学报, 2025, 45(4): 1086-1099

Ma Jingjing, Wei Na. Monotonicity of Solutions for Parabolic Equations Related to Fractional Order $p$-Laplace Operators on the Upper Half Space[J]. Acta Mathematica Scientia, 2025, 45(4): 1086-1099

1 引言

本文讨论上半空间分数阶 $p$-Laplace 算子相关的含有 Dirichlet 边界条件的退化抛物方程解的单调性

$\begin{cases} \frac{\partial u}{\partial t}(x,t)+(-\triangle)^s_pu(x,t)=f(u(x,t)), &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)>0, &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)=0, &\quad(x,t)\notin\mathbb{R}^{n}_+\times(0,\infty), \end{cases}$

其中 $f$ 为 Lipschitz 连续函数, 且 $t\in(0, \infty).$

对固定的 $t\in\mathbb{R},$ 分数阶 $p$-Laplace 算子 $(-\triangle)^s_p$ 定义为

$\begin{eqnarray*} (-\triangle)^s_pu(x,t)&=&C_{n,s,p}\, P.V.\int_{\mathbb{R}^n}\frac{|u(x,t)-u(y,t)|^{p-2}\big(u(x,t)-u(y,t)\big)}{|x-y|^{n+ps}}{\rm d}y\\ &=&C_{n,s,p}\lim_{\varepsilon\to0}\int_{\mathbb{R}^n\setminus B_\varepsilon(x,t)}\frac{|u(x,t)-u(y,t)|^{p-2}\big(u(x,t)-u(y,t)\big)}{|x-y|^{n+ps}}{\rm d}y, \end{eqnarray*}$

其中 $P.V.$ 为柯西主值.

为了保证积分有意义, 要求

$u(x,t)\in C^{1,1}_{\rm loc}\cap\mathcal{L}_{sp},$

其中

$\mathcal{L}_{sp}:=\big\{u\in L^{p-1}_{\rm loc}\big|\int_{\mathbb{R}^n}\frac{|u(x,t)|^{p-1}}{1+|(x,t)|^{n+ps}}{\rm d}x<\infty\big\}.$

本文假设 $p\ge2,$ 因为 $u(x,t)\in C^{1,1}_{\rm loc}\cap\mathcal{L}_{sp}$, $(-\triangle)^s_p$$1<p<2$ 时没有定义, 见文献[5,引理 5.2]. 当$s\to1$ 时, $(-\triangle)^s_pu\to-\triangle_pu:=-{\rm div}(|\nabla u|^{p-2}\nabla u).$

$p=2$ 时, $(-\triangle)^s_p$ 为经典分数阶算子 $(-\triangle)^s$. Caffarelli 和 Silvestre[3]利用延拓方法将分数阶 Lalpace 算子推广到更高维空间, 从而将非局部问题转化为局部问题, 这为研究分数阶方程提供了有效工具. 由于微分方程与其对应的积分方程具有等价性, 陈文雄和李从明等[7]利用积分形式移动平面法和正则性提升方法研究了分数阶方程解的性质. 上述方法已被广泛应用于研究涉及分数阶 Lalpace 算子的方程, 见文献[2,4,9,11,12,14].

随后, 陈文雄和李从明等[6]提出了移动平面的直接方法, 并将该方法应用于分数阶 Lalpace 算子对称性, 单调性及其它非局部方程的研究[8]. 此方法在研究更一般的方程时, 不再需要对解进行额外限制, 例如拟微分方程. 然而该方法在很大程度上依赖于 $G(t)=|t|^{p-2}t$ 的退化性. 为了解决这一问题, 陈文雄和李从明[5]引入了 Hopf 引理的变体, 并进一步利用移动平面法研究了解的相关性质.

近几年, 关于半线性抛物方程和含有局部算子的非线性抛物方程已有部分结果, 见文献[1,15,16,19,20]. 但关于含有非局部算子非线性抛物方程的研究目前较少. 最近, 陈文雄和武乐云[10]证明了上半空间分数阶抛物方程解的单调性. 随后, 陈文雄和王朋燕[18]证明了分数阶 $p$-Laplace 算子相关的抛物方程的 Hopf 引理, 以及 $p=2$ 时, 反对称函数的 Hopf 引理, 此引理在研究解的单调性中起着关键作用.

受上述工作的启发, 本文主要研究分数阶 $p$-Laplace 算子相关的抛物方程 (1.1) 解的单调性. 主要结论叙述如下

定理 1.1(上半空间单调性) $f:\, [0,\infty)\to\mathbb{R}$ 为 Lipschitz 连续函数, 其中 $f(0)=0,$$ f'(0)\le0.$$u(x,t)\in(C^{1,1}_{\rm loc}(\mathbb{R}^{n+1}_+)\cap C(\overline{\mathbb{R}^{n+1}_+})\cap\mathcal{L}_{ps})\times C^1(0,\infty).$$u$ 为方程 (1.1) 的有界正解并且满足

$\mathop{\underline{\lim}}_{|x|\to\infty}u(x,t)\ge0,$

则其沿 $x_1$ 方向单调递增, 并且

$\frac{\partial u}{\partial x_1}(x,t)>0, \quad (x,t)\in\mathbb{R}^{n}_+\times(0,\infty).$

为了证明定理 1.1, 首先需要建立反对称函数极大值原理, 叙述如下

$x\in\mathbb{R}^n,$ 定义 $x=(x_1,x'), \, x^\lambda=(2\lambda-x_1, x'),$ 其中 $x'\in\mathbb{R}^{n-1}.$$ T_\lambda=\{x\in\mathbb{R}^n\,|\,x_1=\lambda\},$$\Sigma_\lambda:=\{x\in\mathbb{R}^n\,|\, x_1<\lambda\}.$假设 $u(x,t)$ 为方程 (1.1) 的解, 为了比较 $u(x,t)$$u_\lambda(x,t)$ 的值, 定义

$u_\lambda(x,t)=u(x^\lambda, t) \ \text{且}\ w_\lambda(x,t)=u_\lambda(x,t)-u(x,t).$

定理 1.2(反对称函数极大值原理) $\Omega$$\Sigma_\lambda$ 上有界区域. 设

$w_\lambda(x,t)\in(C^{1,1}_{\rm loc}\cap\mathcal{L}_{ps})\times C^1[0,\infty),$

$w_\lambda(x,t)$ 关于 $t$ 一致有界, 且关于 $x$$\bar{\Omega}$ 区域上下半连续, 并且满足

$\begin{cases} \frac{\partial w_\lambda}{\partial t}(x,t)+(-\triangle)^s_pu_\lambda(x,t)-(-\triangle)^s_pu(x,t)\ge c_\lambda(x,t)w_\lambda(x,t), &\quad(x,t)\in\Omega\times(0,\infty),\\ w_\lambda(x,t)\ge0, &\quad(x,t)\in(\Sigma_\lambda\setminus\Omega)\times[0,\infty),\\ w_\lambda(x,0)\ge0, &\quad x\in\Omega,\\ w_\lambda(x^\lambda,t)=-w_\lambda(x,t), &\quad(x,t)\in\Sigma_\lambda\times[0,\infty). \end{cases}$

$c_\lambda(x,t)$ 有界, 则

$\begin{equation}w_\lambda(x,t)\ge0, \quad(x,t)\in\Sigma_\lambda\times[0,\infty).\end{equation}$

此外, 若存在点 $(x^0,t_0)\in\Omega\times(0,T]$ 使得 $w_\lambda=0,$$w_\lambda(x,t_0)\equiv0, \forall x\in\mathbb{R}^n.$若假设

$\begin{equation}\mathop{\underline{\lim}}_{|x|\to\infty}w_\lambda(x,t)\ge0, \end{equation}$

则当 $\Omega$ 为无界区域时, 上述结论也成立.

注1.1 在定理 1.2 中, 若将 (1.2) 式中第一个等式替换为

$\frac{\partial w}{\partial t}(x,t)+(-\triangle)^s_pu_\lambda(x,t)-(-\triangle)^s_pu(x,t)\ge0,\quad(x,t) \in\Omega\times(0,\infty),$

定理 1.2 的结论仍然成立.

接下来, 还需要证明如下狭窄区域原理

定理 1.3(狭窄区域原理) $\Omega$$\Sigma_\lambda$ 上有界狭窄区域且含于 $\{x|\lambda-\delta<x_1<\lambda\}$.

$u(x,t), \, u_\lambda(x,t)\in(C^{1,1}_{\rm loc}(\Omega)\cap\mathcal{L}_{ps})\times C^1([0,\infty)),$

$w_\lambda(x,t)$ 关于 $t$ 一致有界, 且关于 $x$ 在区域 $\bar{\Omega}$ 上下半连续, 并且满足

$\begin{cases} \frac{\partial w_\lambda}{\partial t}(x,t)+(-\triangle)^s_pu_\lambda(x,t)-(-\triangle)^s_pu(x,t)=c_\lambda(x,t)w_\lambda(x,t), &\quad(x,t)\in\Omega\times(0,\infty),\\ w_\lambda(x,t)\ge0, &\quad(x,t)\in(\Sigma_\lambda\setminus\Omega)\times(0,\infty),\\ w_\lambda(x^\lambda,t)=-w_\lambda(x,t), &\quad(x,t)\in\Sigma_\lambda\times[0,\infty). \end{cases}$

存在 $(y^0,t_0)\in\Sigma_\lambda\times(0,\infty)$ 使得 $w_\lambda(y^0,t_0)>0,$$c_\lambda(x,t)$ 有上界, 则对足够小 $\delta$,

$\begin{equation} w_\lambda(x,t)\ge0, \quad(x,t)\in\Sigma_\lambda\times[0,\infty).\end{equation}$

此外, 若存在一点 $(x^0,t_0)\in\Omega\times(0,\infty)$ 使得 $w_\lambda=0,$$w_\lambda(x,t_0)\equiv0, \forall x\in\mathbb{R}^n.$

本文组织如下: 第二节, 证明反对称函数极大值原理和狭窄区域原理; 第三节, 首先建立反对称函数 Hopf 引理, 然后利用移动平面法证明上半空间分数阶 $p$-Laplace 算子相关的抛物方程解的单调性.

2 证明定理 1.2 和定理 1.3

在本节中, 将证明反对称函数极大值原理和狭窄区域原理. 首先证明反对称函数极大值原理.

定理1.2的证明 类似文献[10]和[17]的证明思路. 为了方便读者查阅, 我们给出完整证明过程. 令

$\tilde{u}_\lambda(x,t)={\rm e}^{-mt}u_\lambda(x,t),\, \tilde{u}(x,t)={\rm e}^{-mt}u(x,t), \, \tilde{w}_\lambda(x,t)={\rm e}^{-mt}w_\lambda(x,t),$

其中 $m>0.$ 由 (1.2) 式可得, $\tilde{w}_\lambda(x,t)$ 满足

$\begin{cases} \frac{\partial \tilde{w}_\lambda}{\partial t}(x,t)+(-\triangle)^s_p\tilde{u}_\lambda(x,t)-(-\triangle)^s_p\tilde{u}\ge c_\lambda(x,t)\tilde{w}_\lambda(x,t), &\quad(x,t)\in\Omega\times(0,\infty),\\ \tilde{w}_\lambda(x,t)\ge0, &\quad(x,t)\in(\Sigma_\lambda\setminus\Omega)\times[0,\infty),\\ \tilde{w}_\lambda(x,0)\ge0, &\quad x\in\Omega,\\ \tilde{w}_\lambda(x^\lambda,t)=-\tilde{w}_\lambda(x,t), &\quad(x,t)\in\Sigma_\lambda\times[0,\infty). \end{cases}$

接下来, 证明

$\begin{equation}\tilde{w}_\lambda(x,t_0)\ge0, \quad (x,t)\in\Sigma_\lambda\times[0,\infty). \end{equation}$

若 (2.1) 式不成立, 则存在 $(x^0,t_0)\in\Omega\times(0,T]$ 使得

$\tilde{w}_\lambda(x^0,t_0):=\min_{\Sigma_\lambda\times(0,T]}\tilde{w}_\lambda(x,t)<0.$

因此

$\frac{\partial \tilde{w}_\lambda}{\partial t}(x^0,t_0)\le0.$

定义 $G(z)=|z|^{p-2}z,$ 显然 $G(z)$ 为严格单调增函数, 并且 $G'(z)=(p-1)|z|^{p-2}\ge0.$ 通过直接计算, 可得

$\begin{eqnarray*} &&(-\triangle)^s_p\tilde{u}_\lambda(x^0,t_0)-(-\triangle)^s_p\tilde{u}(x^0,t_0)\nonumber\\ &=&C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}(y,t_0)) }{|x^0-y|^{n+ps}}{\rm d}y\nonumber\\ \quad&&+C_{n,p,s}P.V.\int_{\Sigma^c_\lambda}\frac{G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}(y,t_0)) }{|x^0-y|^{n+ps}}{\rm d}y\nonumber\\ &=&C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}(y,t_0)) }{|x^0-y|^{n+ps}}{\rm d}y\nonumber\\ \quad&&+C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}_\lambda(y,t_0)) }{|x^0-y^\lambda|^{n+ps}}{\rm d}y\nonumber\\ &=&C_{n,p,s}P.V.\int_{\Sigma_\lambda}\bigg[\frac1{|x^0-y|^{n+ps}}-\frac1{|x^0-y^\lambda|^{n+ps}}\bigg]\nonumber\\ \quad&&\times[G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}(y,t_0))]{\rm d}y\nonumber\\ \quad&&+C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}(y,t_0))}{|x^0-y^\lambda|^{n+ps}}{\rm d}y\nonumber\\ \quad&&+C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}_\lambda(y,t_0)) }{|x^0-y^\lambda|^{n+ps}}{\rm d}y\nonumber\\ &=:&C_{n,p,s}\{A_1+A_2+A_3\}. \end{eqnarray*}$

首先, 估计 $A_1.$ 事实上, 对任意 $x,y\in\Sigma_\lambda$, 有 $|x^0-y|<|x^0-y^\lambda|,$

$G(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0))-G(\tilde{u}(x^0,t_0)-\tilde{u}(y,t_0))\le0,$

且一定存在 $y\in\Sigma_\lambda$ 使得上述不等式是严格不等式. 由 $G(z)$ 单调性可知, $(x^0,t_0)$$w$ 的极小点, 则 $u_\lambda(x^0,t_0)-(u_\lambda(y,t_0)-(u(x^0,t_0)-u(y,t_0))\le0,$ 且不等式对某些 $y\in\Sigma_\lambda$ 严格成立. 因此 $A_1<0$.

接下来, 估计 $A_2+A_3.$ 利用平均值定理, 可得

$\begin{equation*} A_2+A_3 =\tilde{w}(x^0,t_0)\int_{\Sigma_\lambda}\frac{G'(\xi(y,t_0))+G'(\eta(y,t_0))}{|x^0-y^\lambda|^{n+ps}}{\rm d}y\le0, \end{equation*}$

其中 $\xi(y,t_0)\in(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}_\lambda(y,t_0),\tilde{u}(x^0,t_0)-\tilde{u}_\lambda(y,t_0) ),\, \eta(y,t_0)\in(\tilde{u}_\lambda(x^0,t_0)-\tilde{u}(y,t_0),\tilde{u}(x^0,$$t_0)-\tilde{u}(y,t_0)).$

$A_1$$A_2+A_3$ 估计式代入 (2.2) 式, 可得

$(-\triangle)^s_p\tilde{u}_\lambda(x^0,t_0)-(-\triangle)^s_p\tilde{u}(x^0,t_0)<0.$

$\begin{equation} \frac{\partial \tilde{w}_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_p\tilde{u}_\lambda(x^0,t_0)-(-\triangle)^s_p\tilde{u}(x^0,t_0)<0. \end{equation}$

另一方面, 通过简单计算, 可得

$\begin{eqnarray*} &&\frac{\partial \tilde{w}_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_p\tilde{u}_\lambda(x^0,t_0)-(-\triangle)^s_p\tilde{u}(x^0,t_0)\\ &=&-m{\rm e}^{-mt}w_\lambda(x^0,t_0)+{\rm e}^{-mt}\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+{\rm e}^{-m(p-1)t}[(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)]\\ &\ge&{\rm e}^{-mt}[-mw_\lambda(x^0,t_0)+\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)]\\ &\ge&(-m+c_\lambda(x^0,t_0))\tilde{w}_\lambda(x^0,t_0), \end{eqnarray*}$

其中 $(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)<0$ 是因为 $\tilde{w}_\lambda$$w_\lambda$ 符号相同. 由于 $c_\lambda(x,t)$ 有界, 选取 $m$ 使得$-m+c_\lambda(x^0,t_0)<0,$

$\frac{\partial \tilde{w}_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_p\tilde{u}_\lambda(x^0,t_0)-(-\triangle)^s_p\tilde{u}(x^0,t_0)>0.$

与 (2.3) 式矛盾, 因此 (2.1) 式成立, 即可得结论 (1.3).

$\Omega$ 无界, 条件 (1.4) 保证了 $w$ 负极小值一定可以在某一点达到, 则通过类似讨论, 也可推出矛盾, 从而证明结论仍然成立.

假设存在 $(x^0,t_0)\in\Omega\times(0,T]$ 使得 $w_\lambda(x^0,t_0)=0,$ 显然 $(x^0,t_0)$$w_\lambda(x,t)$ 极小点, 因此, $\frac{\partial w_\lambda}{\partial t}(x^0,t_0)\le0.$ 断言

$\begin{equation}w_\lambda(x,t_0)\equiv0, \quad x\in\Sigma_\lambda.\end{equation}$

若不成立, 则

$\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)<0.$

进一步, 利用 (1.2) 式可得

$0>\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)\ge c_\lambda(x^0,t_0)w_\lambda(x^0,t_0)=0,$

推出矛盾. 因此 (2.4) 式成立. 根据 $w_\lambda$ 反对称性, 可得

$w_\lambda(x,t_0)\equiv0, \quad \forall x\in\mathbb{R}^n.$

定理 1.2 得证.

接下来, 证明狭窄区域原理.

定理1.3的证明 类似文献[6]中的证明思路. 对任意固定的 $T\in[0,\infty),$ 若(1.6)式不成立, 则存在一个 $(x^0, t_0)\in\Omega\times(0,T]$ 使得

$w_\lambda(x^0,t_0):=\inf_{\Omega\times(0,T]}w(x,t)<0,$

因此

$\frac{\partial w_\lambda}{\partial t}(x^0,t_0)\le0.$

通过直接计算, 可得

$\begin{eqnarray*} &&(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)\nonumber\\ &=&C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(u_\lambda(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0))}{|x^0-y^\lambda|^{n+ps}}{\rm d}y\nonumber\\ \quad&&+C_{n,p,s}P.V.\int_{\Sigma_\lambda}\frac{G(u_\lambda(x^0,t_0)-u(y,t_0))-G(u(x^0,t_0)-u_\lambda(y,t_0)) }{|x^0-y^\lambda|^{n+ps}}{\rm d}y\nonumber\\ \quad&&+C_{n,p,s}P.V.\int_{\Sigma_\lambda}\bigg[\frac1{|x^0-y|^{n+ps}}-\frac1{|x^0-y^\lambda|^{n+ps}}\bigg]\nonumber\\ \quad&&\times[G(u_\lambda(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0))]{\rm d}y\nonumber\\ &=:&C_{n,p,s}P.V.\{I_1+I_2+I_3\}. \end{eqnarray*}$

首先, 估计 $I_1+I_2.$ 由平均值定理和 $G$ 单调性, 可得

$\begin{equation}I_1+I_2 =w_\lambda(x^0,t_0)\int_{\Sigma_\lambda}\frac{G'(\xi(y,t_0))+G'(\eta(y,t_0))}{|x^0-y^\lambda|^{n+ps}}{\rm d}y\le0, \end{equation}$

其中, $\xi(y,t_0)\in(u_\lambda(x^0,t_0)-u_\lambda(y,t_0),u(x^0,t_0)-u_\lambda(y,t_0) ),\, \eta(y,t_0)\in(u_\lambda(x^0,t_0)-u(y,t_0),u(x^0,$$t_0)-u(y,t_0) ).$

接下来, 估计 $I_3.$$\delta_{x^0}=dist\{x^0, T_\lambda\},$ 显然, $\delta_{x^0}=\lambda-x^0_1,$ 则利用平均值定理, 可得

$\begin{align*} I_3 =\,&\delta_{x^0}\int_{\Sigma_\lambda}\frac{2(n+ps)(\lambda-y_1)}{|x^0-\zeta|^{n+ps+2}}[G(u_\lambda(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0))]{\rm d}y\\:=\,&\delta_{x^0}F(x^0,t_0),\end{align*}$

其中, $\zeta\in(y,y^\lambda).$ 再次利用 $G$ 单调性, 可得

$G(u_\lambda(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0))\le0, \quad\text{但} \not\equiv0.$

事实上, $|x^0-y|<|x^0-y^\lambda|,$

$\frac{2(n+ps)(\lambda-y_1)}{|x^0-\zeta|^{n+ps+2}}=\frac1{\delta_{x^0}}\bigg[\frac1{|x^0-y|^{n+ps}}-\frac1{|x^0-y^\lambda|^{n+ps}}\bigg]>0,$

因此, 结合 $u$ 连续性, 可得 $F(x^0,t_0)<0$.

接下来证明存在一个正常数 $C_1,$ 使得对足够小的 $\delta_{x^0}$,

$\begin{equation}F(x^0,t_0)\le-\frac{C_1}2.\end{equation}$

若不成立, 则当 $\delta_{x^0}\to0$, $F(x^0, t_0)\to0,$ 并且对任意 $y\in\Sigma_\lambda,$

$G(u_\lambda(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0))\to0,$

易知, 对任意 $y\in\Sigma_\lambda,$$w_\lambda(x^0,t_0)-w_\lambda(y,t_0)\to0.$ 因为当 $\delta_{x^0}\to0$, $w_\lambda(x^0,t_0)\to0,$

$w_\lambda(y,t_0)\equiv0,\quad \forall (y, t_0)\in\Sigma_\lambda\times(0,\infty),$

$w_\lambda(y,t_0)>0$ 矛盾. 即, 存在 $C_0>0$ 使得当 $\delta_{x^0}\to0$, $F(x^0,t_0)\to-C_0.$ 由于 $F(x^0,t_0)$ 关于 $(x^0,t_0)$ 连续, 因此 (2.7) 式成立.

将 (2.6) 和 (2.7) 式代入 (2.5) 式, 可得

$\begin{equation} (-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)\le-C \delta_{x^0}. \end{equation}$

因为 $\nabla w_\lambda(x^0,t_0)=0,$

$w_\lambda(\tilde{x}^0,t_0)=w_\lambda(x^0,t_0)+\nabla w_\lambda(x^0,t_0)(\tilde{x}^0-x^0)+o(|\tilde{x}^0-x^0|),$

其中 $\tilde{x}^0=(\lambda,(x^0)')\in T_\lambda,$

$w_\lambda(x^0,t_0)=o(1)\delta_{x^0}.$

根据 $c_\lambda(x,t)$ 上有界, 可得

$\begin{equation} c_\lambda(x^0,t_0)w_\lambda(x^0,t_0)\ge o(1)\delta_{x^0}.\end{equation}$

结合 (2.8) 和 (2.9) 式, 可得

$0>-(C+o(1))\delta_{x^0}\ge\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)-c_\lambda(x^0,t_0)w_\lambda(x^0,t_0)=0,$

与 (1.5) 式中第一个等式矛盾, 因此(1.6)式成立.

假设存在 $(x^0,t_0)\in\Omega\times(0,T]$ 使得 $w_\lambda(x^0,t_0)=0,$

$w_\lambda(x^0,t_0)=\inf_{\Sigma_\lambda\times(0,\infty)}w(x,t)=0,\quad \frac{\partial w_\lambda}{\partial t}(x^0,t_0)\le0.$

断言

$\begin{equation} w_\lambda(x,t_0)\equiv0, \quad x\in\Sigma_\lambda.\end{equation}$

若不成立, 则

$\begin{eqnarray*} &&\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)\\ &\le&C_{n,p,s}P.V.\int_{\mathbb{R}^n}\frac{G(u_\lambda(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0)) }{|x^0-y|^{n+ps}}{\rm d}y\\ &=&C_{n,p,s}P.V.\int_{\Sigma_\lambda}\bigg[\frac1{|x^0-y|^{n+ps}}-\frac1{|x^0-y^\lambda|^{n+ps}}\bigg]\\ \quad&&\times[G(u(x^0,t_0)-u_\lambda(y,t_0))-G(u(x^0,t_0)-u(y,t_0))] {\rm d}y <0. \end{eqnarray*}$

结合(1.5) 式, 可得

$0>\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)=c_\lambda(x^0,t_0)w_\lambda(x^0,t_0)=0,$

推出矛盾. 因此 (2.10) 成立. 则由 $w_\lambda$ 反对称性, 可得

$w_\lambda(x,t_0)\equiv0, \quad \forall x\in\mathbb{R}^n.$

定理 1.3 得证.

3 解的单调性

在本节中, 将利用移动平面法证明方程 (1.1) 解的单调性. 此方法由陈文雄和李丛明等[6]提出, 并在文献[8]中进行了总结. 在证明解的单调性之前, 先证 Hopf 引理.

引理 3.1(反对称函数 Hopf 引理) $w_\lambda(x,t)\in (C^{1,1}_{\rm loc}(\Omega)\cap\mathcal{L}_{ps})\times C^1(0,\infty)$ 为有界函数, 并且满足

$\begin{cases} \frac{\partial w_\lambda}{\partial t}(x,t)+(-\triangle)^s_pu_\lambda(x,t)-(-\triangle)^s_pu(x,t)= c_\lambda(x,t)w_\lambda(x,t), &\quad (x,t)\in\Sigma_\lambda\times(0,\infty),\\ w_\lambda(x,t)>0, &\quad (x,t)\in\Sigma_\lambda\times(0,\infty)\\ w_\lambda(x^\lambda,t)=-w_\lambda(x,t), &\quad (x,t)\in\Sigma_\lambda\times(0,\infty), \end{cases}$

其中 $c_\lambda(x,t)$ 为有下界函数. 若存在点 $x\in\Sigma_\lambda$ 使得

$\begin{equation} w_\lambda(x,t)>0, \quad (x,t)\in\Sigma_\lambda\times(0,\infty). \end{equation}$

则对任意 $(\tilde{x},\tilde{t})\in T_\lambda\times(0,\infty)$,

$\frac{\partial w_\lambda}{\partial x_1}(\tilde{x},\tilde{t})<0.$

不失一般性, 假设 $\lambda=0$$\tilde{x}=0,$$\lambda=0$, 定义

$\Sigma_\lambda=\Sigma_0,\, T_\lambda=T_0,\, x^\lambda=x^0=(-x_1,x'),\, y^\lambda=y^0=(-y_1,y'),$

并且

$w_\lambda(x,t)=w_0(x,t),\quad c_\lambda(x,t)=c_0(x,t).$

由 (3.1) 式和 $w_0$ 的连续性可知, 存在集合 $D\subset\subset\Sigma_0$ 和正常数 $c_0$ 使得

$w_0(x,t)>c_0, \quad (x,t)\in\Sigma_0\times[\tilde{t}-1,\tilde{t}+1].$

$\tilde{w}(x,t)=\tilde{u}_0(x,t)-\tilde{u}(x,t)={\rm e}^{mt}(u_0(x,t)-u (x,t)),$ 其中 $m>0.$ 根据 $c_\lambda$ 假设条件, 存在 $m+c_0(x,t)\ge0.$ 对固定的 $\tilde{t}$, $\tilde{w}(x,t)$ 满足

$\begin{equation} \frac{\partial \tilde{w}}{\partial t}(x,t)+(-\triangle)^s_p\tilde{u_0}(x,t)-(-\triangle)^s_p\tilde{u}(x,t)=(m+c_0(x,t))\tilde{w}(x,t)\ge0, \end{equation}$

其中 $(x,t)\in\Sigma_0\times[\tilde{t}-1,\tilde{t}+1].$

定义 $D_0$$D$ 在任意时刻 $t$ 关于平面 $T_0$ 的反射. 接下来, 构造 $w$ 下解

$\underline{w}=\underline{u}_0-\underline{u}=\chi_{D\cup D_0}(x)\tilde{u}_0(x,t)+\delta\eta(t)l(x)-\chi_{D\cup D_0}(x)\tilde{u}(x,t),$

其中

$\begin{equation*} \chi_{D\cup D_0}(x)=\begin{cases} 1, &\quad x\in D\cup D_0,\\ 0, &\quad x\notin D\cup D_0. \end{cases} \end{equation*}$

$\eta(t)\in C^\infty_0([\tilde{t}-1,\tilde{t}+1]),$ 且满足

$\begin{equation*} \eta(t)=\begin{cases} 1, &\quad t\in[\tilde{t}-\frac12,\tilde{t}+\frac12],\\ 0, &\quad t\notin[\tilde{t}-1,\tilde{t}+1]. \end{cases} \end{equation*}$

并且 $l(x)=-x_1\xi(x),$ 其中

$\begin{equation*} \xi(x)=\xi(|x|)=\begin{cases} 1, &\quad |x|<\varepsilon,\\ 0, &\quad |x|\ge2\varepsilon, \end{cases} \end{equation*}$

并且 $\xi(x)\in C^\infty_0(B_{2\varepsilon}(0)).$ 显然, $l(x)$ 为关于平面 $T_0$ 的反对称函数.

首先估计 $\underline{u}_0(x,t)$. 对每一个固定 $t\in[\tilde{t}-1,\tilde{t}+1]$ 和任意 $x\in B_{2\varepsilon}(0)\cap\Sigma_0,$

$\begin{align*} & (-\triangle)^s_p(\chi_{D\cup D_0}(x)\tilde{u}_0(x,t)+\delta\eta(t)l(x))\nonumber\\ &=C_{n,p,s}P.V.\int_{\mathbb{R}^n}\frac{G(\delta\eta(t)l(x)-\chi_{D\cup D_0}(y)\tilde{u}_0(y,t)-\delta\eta(t)l(y))}{|x-y|^{n+ps}}{\rm d}y\nonumber\\ &=C_{n,p,s}P.V.\bigg\{\int_{B_{2\varepsilon}(0)\cap\Sigma_0}\frac{G(\delta\eta(t)l(x)-\delta\eta(t)l(y))}{|x-y|^{n+ps}}{\rm d}y +\int_{D\cup D_0}\frac{G(\delta\eta(t)l(x)-\tilde{u_0}(y,t))}{|x-y|^{n+ps}}{\rm d}y\nonumber\\ & +\!\!\int_{\mathbb{R}^n\setminus\{(B_{2\varepsilon}(0)\cap\Sigma_0)\cup(D\cup D_0)\}}\frac{G(\delta\eta(t)l(x))}{|x-y|^{n+ps}}{\rm d}y \!+\!\!\int_{D\cup D_0}\frac{G(\delta\eta(t)l(x))}{|x-y|^{n+ps}}{\rm d}y \!-\!\!\int_{D\cup D_0}\frac{G(\delta\eta(t)l(x))}{|x-y|^{n+ps}}{\rm d}y\bigg\}\nonumber\\ &=\delta\eta(t)(-\triangle)^s_pl(x)+C_{n,p,s}P.V.\int_{D\cup D_0}\frac{G(\delta\eta(t)l(x)-\tilde{u_0}(y,t))-G(\delta\eta(t)l(x))}{|x-y|^{n+ps}}{\rm d}y\nonumber\\ &\le c_0\delta\eta(t)|x_1|+C_{n,p,s}P.V.\int_{D\cup D_0}\frac{G(\delta\eta(t)l(x)-\tilde{u_0}(y,t))-G(\delta\eta(t)l(x))}{|x-y|^{n+ps}}{\rm d}y, \end{align*}$

其中上述不等式最后一行是因为对 $(-\bigtriangleup)^s_pl(x)$ 在点 $\tilde{x}=(0,x')\in T_0$, 利用平均值定理, 有

$|(-\triangle)^s_Pl(x)|=|(-\triangle)^s_Pl(\tilde{x})+\nabla((-\triangle)^s_Pl) (\xi)\cdot(x-\tilde{x})| \le c_0|x_1|,$

其中 $x=(x_1,x')\in B_{2\varepsilon}(0),\, \xi\in(\tilde{x},x)$.

接下来估计 $\underline{u}(x,t)$.

$\begin{eqnarray*} (-\triangle)^s_p\underline{u}(x,t)&=&(-\triangle)^s_p(\chi_{D\cup D_0}(x)\tilde{u}(x,t))\\ &=&C_{n,p,s}P.V.\int_{\mathbb{R}^n}\frac{G(-\chi_{D\cup D_0}(x)\tilde{u}(y,t))}{|x-y|^{n+ps}}{\rm d}y. \end{eqnarray*}$

$(x,t)\in(B_{2\varepsilon}(0)\cap\Sigma_0)\times[\tilde{t}-1,\tilde{t}+1],$ 根据 (3.3) 式 和 $\underline{w}$ 定义, 有

$\begin{eqnarray*} &&\frac{\partial\underline{w}}{\partial t}(x,t)+(-\triangle)^s_p\underline{u}_0(x,t)-(-\triangle)^s_p\underline{u}(x,t)\\ &=&\delta\eta'(t)l(x)+(-\triangle)^s_p(\chi_{D\cup D_0}(x)\tilde{u_0}(x,t)+\delta\eta(t)l(x))-(-\triangle)^s_p(\chi_{D\cup D_0}(x)\tilde{u}(x,t))\\ &\le&\delta\eta'(t)l(x)+c_0\delta\eta(t)|x_1|+C_{n,p,s}P.V.\int_{D\cup D_0}\frac{G(\delta\eta(t)l(x)-\tilde{u_0}(y,t))-G(\delta\eta(t)l(x))}{|x-y|^{n+ps}}{\rm d}y\\ &-&C_{n,p,s}P.V.\int_{\mathbb{R}^n}\frac{G(-\chi_{D\cup D_0}(y)\tilde{u}(y,t))}{|x-y|^{n+ps}}{\rm d}y, \end{eqnarray*}$

其中 $(x,t)\in(B_{2\varepsilon}(0)\cup\Sigma_0)\times[\tilde{t}-1,\tilde{t}+1],0\le\eta(t)\le1.$

取足够小 $\delta$, 则有

$\begin{equation} \frac{\partial\underline{w}}{\partial t}(x,t)+(-\triangle)^s_p\underline{u}_0(x,t)-(-\triangle)^s_p\underline{u}(x,t)\le0. \end{equation}$

$w^1(x,t)=\tilde{w}(x,t)-\underline{w}(x,t),$ 显然 $w^1(x,t)=-w^1(x^0,t).$ 结合 (3.2)式, 对任意 $(x,t)\in(B_{2\varepsilon}(0)\cap\Sigma_0)\times[\tilde{t}-1,\tilde{t}+1],$$w^1(x,t)$ 满足

$\frac{\partial w^1}{\partial t}(x,t)+(-\triangle)^s_p\tilde{w}(x,t)-(-\triangle)^s_p\underline{w}(x,t)\ge0,$

根据 $\underline{w}(x,t)$ 定义, 对任意 $(x,t)\in(\Sigma_0\setminus (B_{2\varepsilon}(0)\cap\Sigma_0))\times[\tilde{t}-1, \tilde{t}+1],$$w^1\ge0,$ 并且 $w^1(x,\tilde{t}-1)\ge0,\, x\in\Sigma_0.$$c_0(x,t)=0,$ 由反对称函数极大值原理 (定理 1.2), 可得

${\rm e}^{mt}(u_0(x,t)-u(x,t))-\delta l(x)\eta(t)\ge0, \quad (x,t)\in(B_{2\varepsilon}(0)\cap\Sigma_0)\times[\tilde{t}-1,\tilde{t}+1].$

$u_0(x,t)-u(x,t)\ge {\rm e}^{-mt}\delta (-x_1), \quad (x,t)\in(B_{2\varepsilon}(0)\cap\Sigma_0)\times\bigg[\tilde{t}-\frac12,\tilde{t}+\frac12\bigg].$

此外, 由 $u_0(0,\tilde{t})-u(0,\tilde{t})=0,$ 可得

$\frac{u_0(x,\tilde{t})-u(x,\tilde{t})-(u_0(0,\tilde{t})-u(0,\tilde{t}))}{-x_1-0}\ge\delta {\rm e}^{-m\tilde{t}}>0, \quad x\in B_\varepsilon(0)\cap\Sigma_0.$

因此 $\frac{\partial w_0}{\partial x_1}(0,\tilde{t})<0.$

引理 3.1 得证.

定理1.1的证明 $\hat{\Sigma}_\lambda=\{x\in\mathbb{R}^n_+\,|\,0<x_1<\lambda\},$$w_\lambda$ 的定义可得

$\begin{cases} \frac{\partial w_\lambda}{\partial t}(x,t)+(-\triangle)^s_pu_\lambda(x,t)-(-\triangle)^s_pu(x,t)= c_\lambda(x,t)w_\lambda(x,t), &\quad (x,t)\in\hat{\Sigma}_\lambda\times(0,\infty),\\ \mathop{\underline{\lim}}\limits_{|x|\to\infty}w_\lambda(x,t)\ge0, &\quad (x,t)\in(\Sigma_\lambda\setminus\hat{\Sigma}_\lambda)\times(0,\infty),\\ w_\lambda(x^\lambda,t)=-w_\lambda(x,t), &\quad (x,t)\in\Sigma_\lambda\times(0,\infty), \end{cases}$

其中

$c_{\lambda_k}(x,t)=\int_0^1f'(ru(x,t)+(1-r)u_{\lambda_k}(x,t)){\rm d}r$

为有界函数.

将证明分为以下三步.

第 1 步 对足够小 $\lambda,$ 证明

$\begin{equation} w_\lambda(x,t)\ge0, \quad (x,t)\in\Sigma_\lambda\times(0,\infty).\end{equation}$

由狭窄区域原理(定理 1.3), 可证 (3.5) 式. 首先令 $\Omega=\hat{\Sigma}_\lambda$ 为狭窄区域, 再结合 $w_\lambda(x,t)\ge0$, 在$(\Sigma_\lambda\setminus\hat{\Sigma}_\lambda)\times(0,\infty),$ 即证 (3.5) 式成立.

定义

$\lambda_0=\sup\{\lambda\,|\,w_\mu(x,t)\ge0, \, (x,t)\in\Sigma_\mu\times(0,\infty), \, \mu\le\lambda\}.$

第 2 步 证明 $\lambda_0=+\infty.$ 反证法. 若 $0<\lambda_0<+\infty$ 并且存在序列 $\lambda_k\ge\lambda_0$ 使得

$\begin{equation}\lambda_k\to\lambda_0,\end{equation}$

并且 $\Sigma^-_{\lambda_k}=\{(x,t)\in\Sigma_{\lambda_k}\times(0,\infty)\,|\,w_{\lambda_k}(x,t)<0\}$ 非空. 令

$\begin{align*}& m_k:=\sup\{u(y_1,x',t)\,|\, y_1\in(0,\lambda_k), x'\in\mathbb{R}^{n-1}, t\in(0,\infty),\\ & \text{并且存在} x_1\in(0,\lambda_k)\,\text{使得} (x_1,x',t)\in\Sigma^-_{\lambda_k}\}. \end{align*}$

分两种情形考虑

情形1 $m_k\to0.$ 根据 (1.1) 式,

$\begin{cases} \frac{\partial w_{\lambda_k}}{\partial t}(x,t)+(-\triangle)^s_pu_{\lambda_k}(x,t)-(-\triangle)^s_pu(x,t)\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=c_{\lambda_k}(x,t)w_{\lambda_k}(x,t), &\quad (x,t)\in\hat{\Sigma}_{\lambda_k}\times(0,\infty),\\ \mathop{\underline{\lim}}\limits_{|x|\to\infty}w_{\lambda_k}(x,t)\ge0, &\quad (x,t)\in(\Sigma_{\lambda_k}\setminus\hat{\Sigma}_{\lambda_k})\times(0,\infty),\\ w_{\lambda_k}(x^{\lambda_k},t)=-w_{\lambda_k}(x,t), &\quad (x,t)\in\Sigma_{\lambda_k}\times(0,\infty), \end{cases}$

其中

$c_{\lambda_k}(x,t)=\int_0^1f'(ru(x,t)+(1-r)u_{\lambda_k}(x,t)){\rm d}r.$

定义

$q_k=\sup_{(x,t)\in\Sigma_{\lambda_k}^-}c_{\lambda_k}(x,t).$

$f'(0)\le0,$ 可得 $\overline{\lim}_{k\to\infty}q_k\le0,$ 进一步由反对称函数极大值原理 (定理 1.2) 可知, 在 $\Sigma^-_{\lambda_k}$ 上, $w_{\lambda_k}(x,t)\ge0$, 与 $\Sigma^-_{\lambda_k}$ 定义矛盾, 因此 $m_k\not\rightarrow0.$

情形2 $m_k\nrightarrow0.$ 反之存在子列 $m_k$ 使得对某个 $\varepsilon_0,$$m_k\ge\varepsilon_0,$ 则存在子列 $x_1^k\in(0,\lambda_k), \, y^k\in\mathbb{R}^{n-1},\, t^k\in(0,\infty)$ 使得

$\begin{equation*} u(x_1^k,y^k,t^k)\ge\varepsilon_0>0. \end{equation*}$

且存在 $a\in[\lambda_0],$ 使得当 $k\to\infty,$$x_1^k\to a.$

$u^k(x,t)=u(x_1,x'+y^k,t+t^k),\quad x=(x_1,x')\in\mathbb{R}^n,\, t\in(0,\infty),$

$\begin{equation} u^k(x^k_1,0,0)\ge\varepsilon_0. \end{equation}$

由于 $u^k(x_1,x',t)$ 一致有界, 根据文献[13]中关于分数阶抛物方程正则性可知, 存在子列 (仍定义为 $u^k$) 使得, 当 $k\to\infty$, 有

$\begin{equation} u^k(x,t)\to \bar{u}(x,t),\quad (-\triangle)^s_pu^k(x,t)\to(-\triangle)^s_p\bar{u}(x,t),\quad (x,t)\in\mathbb{R}^n\times(0,\infty). \end{equation}$

此外, 已知 $\bar{u}(x,t)$ 满足

$\begin{cases} \frac{\partial \bar{u}}{\partial t}(x,t)+(-\triangle)^s_p\bar{u}(x,t)=f(\bar{u}(x,t)), &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ \bar{u}(x,t)=0, &\quad(x,t)\notin\mathbb{R}^{n}_+\times(0,\infty). \end{cases}$

不妨设对某个 $a\in[\lambda_0],$

$\begin{equation} \lim_{k\to\infty} x^k_1= a, \end{equation}$

则由 (3.7) 式, 可得

$\bar{u}(a,0,0)\ge\varepsilon_0>0.$

更进一步, 由 (3.9) 式有

$\begin{equation} \bar{u}(x,t)>0,\quad (x,t)\in\mathbb{R}^{n}_+\times(0,\infty).\end{equation}$

事实上, 若上式不成立, 则存在 $(x^0,t_0)\in\mathbb{R}^{n}_+\times(0,\infty)$ 使得 $\bar{u}(x^0,t_0)=0=\inf_{\mathbb{R}^{n}\times(0,\infty)}\bar{u}(x,t),$$\frac{\partial \bar{u}}{\partial t}(x^0,t_0)+(-\triangle)^s_p\bar{u}(x^0,t_0)<0,$$f(\bar{u}(x^0,t_0))=f(0)=0$ 矛盾, 因此 (3.11) 式成立.

存在子列 $y_1^k\in(0,\lambda_k), \, y^k\in\mathbb{R}^{n-1},\, t^k\in(0,\infty)$ 使得

$\begin{equation} w_{\lambda_k}(y_1^k,y^k,t^k)<0.\end{equation}$

且存在 $b\in[\lambda_0],$ 使得当 $k\to\infty,$$y_1^k\to b.$定义$w^k_{\lambda_k}(x,t)=u^k_{\lambda_k}(x,t)-u^k(x,t).$ 结合 $u^k(x,t)$ 的定义和 (3.12) 式可得, $w_{\lambda_k}^k(y^k_1,0,0)<0.$

由正则性[13]可知, 当 $k\to\infty$,

$\begin{equation} w^k_{\lambda_k}(x,t)\to \bar{w}_{\lambda_0}(x,t)=\bar{u}_{\lambda_0}(x,t)-\bar{u}(x,t)\ge0, \quad (x,t)\in\Sigma_{\lambda_0}\times(0,\infty), \end{equation}$

$\bar{w}_{\lambda_0}(a,0,0)\le0$.

根据 (3.9) 和 (3.13) 式, $\bar{w}_{\lambda_0}(x,t)$ 满足

$\begin{cases} \frac{\partial \bar{w}_{\lambda_0}}{\partial t}(x,t)+(-\triangle)^s_p\bar{u}_{\lambda_0}(x,t)-(-\triangle)^s_p\bar{u}(x,t)\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=f(\bar{u}_{\lambda_0}(x,t))-f(\bar{u}(x,t)), &\quad(x,t)\in\Sigma_{\lambda_0}\times(0,\infty),\\ \mathop{\underline{\lim}}\limits_{|x|\to\infty}w_{\lambda_0}(x,t)\ge0, &\quad(x,t)\in\Sigma_{\lambda_0}\times(0,\infty),\\ \bar{w}_{\lambda_0}(0,x',t)>0, &\quad(x',t)\in\mathbb{R}^{n-1}\times(0,\infty), \end{cases}$

$\begin{equation} \bar{w}_{\lambda_0}(x,t)>0, \quad (x,t)\in\Sigma_{\lambda_0}\times(0,\infty). \end{equation}$

若此式不成立, 则存在 $(x^1,t^1)\in\Sigma_{\lambda_0}\times(0,\infty)$ 使得 $\bar{w}_{\lambda_0}(x^1,t^1)=\inf\limits_{\Sigma_{\lambda_0}\times(0,\infty)}\bar{w}_{\lambda_0}(x,t)=0,$$\frac{\partial \bar{w}_{\lambda_0}}{\partial t}(x^1,t^1)=0.$ 因此

$\begin{eqnarray*} &&\frac{\partial \bar{w}_{\lambda_0}}{\partial t}(x^1,t^1)+(-\triangle)^s_p\bar{u}_{\lambda_0}(x^1,t^1)-(-\triangle)^s_p\bar{u}(x^1,t^1)\\ &=&C_{n,p,s}P.V.\int_{\mathbb{R}^n}\frac{G(\bar{u}_{\lambda_0}(x^1,t^1)-\bar{u}_{\lambda_0}(y,t^1))-G(\bar{u}(x^1,t^1)-\bar{u}(y,t^1)) }{|x^1-y|^{n+ps}}{\rm d}y\\ &=&C_{n,p,s}P.V.\int_{\mathbb{R}^n}\frac{G(\bar{u}(x^1,t^1)-\bar{u}_{\lambda_0}(y,t^1))-G(\bar{u}(x^1,t^1)-\bar{u}(y,t^1)) }{|x^1-y|^{n+ps}}{\rm d}y\\ &=&C_{n,p,s}P.V.\int_{\Sigma_\lambda}\big[\frac1{|x^1-y|^{n+ps}}-\frac1{|x^1-y^{\lambda_0}|^{n+ps}}\big]\\ \quad&&\times[G(\bar{u}(x^1,t^1)-\bar{u}_{\lambda_0}(y,t^1))-G(\bar{u}(x^1,t^1)-\bar{u}(y,t^1))]{\rm d}y <0, \end{eqnarray*}$

$f(\bar{u}_{\lambda_0}(x^1,t^1))-f(\bar{u}(x^1,t^1))=0$ 矛盾, 因此 (3.14) 式成立.

因为在 (3.10) 式中 $a\in[\lambda_0]$, 结合 $\bar{w}_{\lambda_0}(a,0,0)\le0$ 和 (3.14) 式, 可得

$\bar{w}_{\lambda_0}(a,0,0)=0, \quad\text{且} a=\lambda_0.$

也可得

$\begin{equation}\lim\limits_{k\to\infty} x^k_1= a=\lambda_0.\end{equation}$

由于 $\bar{u}(x,t)\equiv0, \, (x,t)\in\overline{\mathbb{R}^n_{-}}\times(0,\infty),$

根据 (3.11) 式, 存在点 $x\in\Sigma_{\lambda_0}$ 使得对任意 $t\in(0,\infty),$$\bar{w}_{\lambda_0}(x,t)>0.$ 其次, $\bar{w}_{\lambda_0}(x,t)$ 满足

$\begin{cases} \frac{\partial \bar{w}_{\lambda_0}}{\partial t}(x,t)+(-\triangle)^s_p\bar{u}_{\lambda_0}(x,t)-(-\triangle)^s_p\bar{u}(x,t)=\bar{c}_{\lambda_0}(x,t)\bar{w}_{\lambda_0}(x,t), &\quad(x,t)\in\Sigma_{\lambda_0}\times(0,\infty),\\ \mathop{\underline{\lim}}\limits_{|x|\to\infty}w_{\lambda_0}(x,t)\ge0, &\quad(x,t)\in\Sigma_{\lambda_0}\times(0,\infty),\\ \bar{w}_{\lambda_0}(x^{\lambda_0},t)=-\bar{w}_{\lambda_0}(x,t), &\quad(x,t)\in\Sigma_{\lambda_0}\times(0,\infty), \end{cases}$

其中

$\bar{c}_{\lambda_0}(x,t)=\int_0^1f'(r\bar{u}(x,t)+(1-r)\bar{u}_{\lambda_0}(x,t)){\rm d}r.$

利用引理 3.1, 可得

$\frac{\partial \bar{w}_{\lambda_0}}{\partial x_1}(x,t)<0, \quad \forall(x,t)\in T_{\lambda_0}\times(0,\infty).$

由此可见

$\frac{\partial \bar{u}}{\partial x_1}(\lambda_0,0,0)=-\frac12\frac{\partial \bar{w}_{\lambda_0}}{\partial x_1}(\lambda_0,0,0)>0,$

则在 $\lambda_0$ 邻域内 $\frac{\partial \bar{u}}{\partial x_1}(x_1,0,0)$ 下有界. $\frac{\partial u^k}{\partial x_1}(x_1,0,0)$ 也有类似性质. 存在常数 $\delta>0$, 当 $k$ 充分大时,

$\frac{\partial u}{\partial x_1}(x_1,y^k,t^k)=\frac{\partial u^k}{\partial x_1}(x_1,0,0)>0,\quad x_1\in[\lambda_0-\delta,\lambda_0+\delta].$

$w_{\lambda_k}(x^k_1,y^k,t^k)<0$ 矛盾. 因此, $\lambda_0=+\infty$ 成立.

第 3 步 结合第 $1$ 步和第 $2$ 步, 对任意 $0<\lambda<\infty,$

$w_\lambda(x,t)\ge0, \quad (x,t)\in\Sigma_\lambda\times(0,\infty).$

若存在 $(x^0,t_0)\in\Sigma_\lambda\times(0,\infty)$ 使得

$w_\lambda(x^0,t_0)=0=\inf_{\mathbb{R}^n\times(0,\infty)}w_\lambda(x,t),$

$\frac{\partial w_\lambda}{\partial t}(x^0,t_0)+(-\triangle)^s_pu_\lambda(x^0,t_0)-(-\triangle)^s_pu(x^0,t_0)<0,$

$f(u_\lambda(x^0,t_0))-f(u(x^0,t_0))=0$ 矛盾. 因此, 对任意 $0<\lambda<\infty,$

$w_\lambda(x,t)>0,\quad \Sigma_\lambda\times(0,\infty).$

由此可得

$\frac{\partial u}{\partial x_1}(x,t)>0,\quad \mathbb{R}^n_+\times(0,\infty).$

即, 沿着 $x_1$ 方向 $u$ 是严格增的.

参考文献

Bidaut-Véron M F.

Initial blow-up for the solutions of a semilinear parabolic equation with source term

//Gauthier-Villars. Équations aux Dérivées Partielles et Applications, Paris: Elsevier, 1998: 189-198

[本文引用: 1]

Brändle C, Colorado E, de Pablo A, Sànchez U.

A concave-convex elliptic problem involving the fractional Laplacian

Proc Roy Soc Edinb Sec A, 2013, 1.3(1): 39-71

[本文引用: 1]

Caffarelli L, Silvestre L.

An extension problem related to the fractional Laplacian

Commun Partial Differ Equ, 2007, 32(8): 1245-1260

[本文引用: 1]

Chen W, Fang Y, Yang R.

Liouville theorems involving the fractional Laplacian on a half space

Adv Math, 2015, 2.4(9): 167-198

[本文引用: 1]

Chen W, Li C.

Maximum principles for the fractional $p$-Laplacian and symmetry of solutions

Adv Math, 2018, 3.5: 735-758

[本文引用: 2]

Chen W, Li C, Li Y.

A direct method of moving planes for the fractional Laplacian

Adv Math, 2017, 3.8: 404-437

[本文引用: 3]

Chen W, Li C, Ou B.

Classification of solutions for an integral equation

Comm Pure Appl Math, 2006, 59(3): 330-343

[本文引用: 1]

Chen W, Li Y, Ma P. The Fractional Laplacian. Hackensack: World Scientific, 2020

[本文引用: 2]

Chen W, Wang P, Niu Y, Hu Y.

Asymptotic method of moving planes for fractional parabolic equations

Adv Math, 2021, 3.7: 107463

[本文引用: 1]

Chen W, Wu L.

Liouville theorems for fractional parabolic equations

Adv Nonlinear Stud, 2021, 21(4): 939-958

[本文引用: 2]

Chen W, Wu L, Wang P.

Nonexistence of solutions for inde nite fractional parabolic equations

Adv Math, 2021, 3.2: 108018

[本文引用: 1]

Chen W, Zhu J.

Indefinite fractional elliptic problem and Liouville theorems

J Differ Equ, 2016, 2.0(5): 4758-4785

[本文引用: 1]

Ding M, Zhang C, Zhou S.

Local boundedness and Hölder continuity for the parabolic fractional $p$-Laplace equations

Calc Var Partial Differ Equ, 2021, 60(1): 1-45

[本文引用: 2]

Li C, Chen W.

A Hopf type lemma for fractional equations

Proc Amer Math Soc, 2019, 1.7(4): 1565-1575

[本文引用: 1]

Merle F, Zaag H.

Optimal estimates for blow-up rate and behavior for nonlinear heat equations

Comm Pure Appl Math, 1998, 51(2): 139-196

[本文引用: 1]

Polàčik P, Quittner P, Souplet P.

Singularity and decay estimates in superlinear problems via Liouville-type theorems. II: Parabolic equations

Indiana Univ Math J, 2007, 56(2): 879-908

[本文引用: 1]

Wang P. Symmetry and monotonicity of solutions to elliptic and parabolic fractional $p$-equations. arXiv: 2502.16158

[本文引用: 1]

Wang P, Chen W.

Hopf's lemmas for parabolic fractional $p$-Laplacians

Commun Pure Appl Anal, 2022, 21(9): 3055-3069

[本文引用: 1]

Wu L, Chen W.

The sliding methods for the fractional $p$-Laplacian

Adv Math, 2020, 3.1: 106933

[本文引用: 1]

Xing R.

The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems

Acta Math Sin (Engl Ser), 2009, 25(3): 503-518

[本文引用: 1]

/