|    
[1] Caffarelli L, Kohn R, Nirenberg L. First order interpolation inequality with weights. Compos Math, 1984, 53: 259--275  
 
[2]  Brezis H, Nirenberg L. {Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents}. Comm  Pure Appl  Math,    1983, 36: 437--477  
   
 
[3]  Kang D. On the quasilinear elliptic problems with critical Sobolev--Hardy exponents and Hardy terms. Nonlinear Anal, 2008,  68: 1973--1985  
 
[4] Cao D,  Han P. Solutions to critical elliptic equations with multi--singular inverse square potentials. J Differ  Equ,  2006, 224: 332--372 
 
[5] Cao D, Peng S. A note on the sign--changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differ Equ, 2003, 193: 424--434 
 
[6] CatrinaF, Wang Z Q. {On the Caffarelli--Kohn--Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extermal functions}. Comm Pure Appl  Math,  2001, 54: 229--258 
 
[7]  Deng Y, Gao Q, Zhang D. {Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on RN. Discrete Contin  Dyn  Syst, 2006,  14: 707--719 
 
[8] Deng Y, Jin L. Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents. Nonlinear Anal, 2007,  67: 3261--3275 
 
[9] Deng Y,  Jin L. On symmetric solutions of a singular elliptic equation with critical Sobolev--Hardy exponent.  J Math  Anal  Appl, 2007, 329: 603--616 
 
[10]  Felli V, Terracini S. Nonlinear Schr\"{o}dinger equations with symmetric multi-polar potentials. Calc Var  Partial Differ  Equ, 2006,  27: 25--58 
 
[11] Ferrero A,  Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations. J Differ  Equ,  2001, 177: 494--522 
 
[12]  Jannelli E. The role played by space dimension in elliptic critcal problems. J  Differ  Equ, 1999, 156: 407--426 
 
[13] Smets D. Nonlinear Schr\"{o}dinger equations with Hardy potential and critical nonlinearities. Trans  Amer  Math Soc,  2005, 357:  2909--2938 
 
[14] Terracini S. On positive solutions to a class of equations with a singular coefficient and critical exponent. Adv Differ  Equ, 1996, 1: 241--264  
  
 
[15] Ghoussoub N, Yuan C, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans  Amer Math  Soc,  2000,  352: 5703--5743 
 
[16] Han P. Quasilinear elliptic problems with critical exponents and Hardy terms. Nonlinear Anal,  2005, 61: 735--758  
  
 
[17] Kang D. Some properties of solutions to the singular quasilinear problems. Nonlinear Anal, 2010, 72: 682--688 
 
[18]  Chen Z, Shen Y. Hardy--Sobolev inequalities with general weiths and remaider terms. Acta Mathematica Scientia, 2008, 28B(3): 469--478  
 
[19] Yao Y, Shen Y. On critical singular quasilinear elliptic problem when n=p. Acta Mathematica Scientia, 2006, 26B(2): 209--219 
  
 
[20] Tarantello G. Nodal solutions of semilinear elliptic equations with critical exponent. Differential Integral Equations, 1992, 5:  25--42  
  
 
[21]  Lions P L. The concentration compactness principle in the calculus of variations, the limit case (I). Rev  Mat Iberoamericana, 1985, 1(1):    145--201 
 
[22] Lions  P L. The concentration compactness principle in the calculus of variations, the limit case (II).  Rev  Mat Iberoamericana, 1985, 1(2): 45--121  
  |